Birla Institute of Technology and Science, Pilani – Pilani Campus

Semester-II, 2022-23

CHE G641: Reaction Engineering

Comprehensive Examination (Regular)

Date: 08/05/2023 Day: Monday

Max. Marks: 90 Duration: 3 Hours

Instructions: 1) Attempt all questions; 2) Take suitable assumptions wherever necessary.

Closed Book (Max. Marks: 60)

- **Q.1.** Give examples of two industrially important reactions (stoichiometric balance) [4] of type E. Stating their application.
- Q.2. Discuss the following terms:a) Bulk diffusion; b) Knudsen diffusion; c) Configurational diffusion; d) Effective diffusivity
- **Q.3.** The observed rate of reaction for a Gas-Solid catalytic and non-catalytic [4] reaction is given by:

$$-r_A = \frac{C_A}{\frac{1}{k_g} + \frac{1}{k_s}}$$

Does it mean the catalyst does not have any effect on the rate of reaction?

- **Q.4.** Discuss how would you determine experimentally the rate-controlling step [4] among film control, ash control, and reaction control for G-S reaction (Type A).
- **Q.5.** What is a pseudo-steady-state assumption? Derive an expression to justify the **[8]** pseudo-steady-state assumption. Also, discuss its limitations.
- Q.6 What do you understand by effectiveness factor? Derive an expression to [8] establish the relationship between the effectiveness factor and Damkohler number for a non-porous catalyst.
- Q.7 Consider the LHHW model to derive a rate expression, assuming adsorption [8] of A is rate controlling, for the following catalytic reaction:

 $A \leftrightarrow R$

- Q.8 Write a note on the development of fluidized bed reactor models. [8]
- Q.9 Derive the general equations for the design of packed bed reactors assuming a [12] pseudo-homogeneous model. Discuss the significance of each term in the expression. Also, mention all the boundary conditions.

[4]

Open Book (Max. Marks: 30)

Q.1 Determine the amount of catalyst required in a packed bed reactor for 80% [10] conversion of 1200 m³/hr of pure gas A (C_{A0}=95 mol/m³) if the stoichiometry and rate are given by:

$$A \rightarrow R;$$

$$-r_{A}' = \frac{50C_{A}}{1 + \frac{C_{A}}{50}}$$
 mol.kg⁻¹.hr⁻¹

Q.2 Ammonia oxidation takes place in a bubbling fluidized bed reactor at 1.0 atm and T = 523 K. The reactor diameter is D =12.0 cm, the gas feed contains 10% NH₃ and 90% O₂, and is fed into the reactor at 800 cm³/s (at reaction conditions). Four kilograms of catalyst with particle size of 100 µm is used in the reactor, and the initial height of settled bed is 40 cm. The catalyst has a sphericity of 0.6 and density $\rho_s = 2.0$ g/cm³. The oxidation reaction is first order with respect to ammonia concentration:

$$-r_{\rm A} = k_{\rm cat} C_{\rm NH3} \text{ mol}/(\text{s.cm}^3)$$

 $-k_{\rm cat} = 0.086 \text{ s}^{-1}$

The gas density is $\rho_g = 0.785 \text{ x } 10^{-3} \text{ g/cm}^3$, viscosity $\mu_g = 2.98 \text{ x } 10^{-4} \text{ g/cm.s}$, and diffusivity $D_{AB} = 0.618 \text{ cm}^2$ /s. Use: $g = 10 \text{ m/s}^2$.

Determine the following in (SI units):

a) Pressure drop across the bed of solids	[2]
b) Pressure drop due to perforated plate for a fluidized bed height of 55 cm	[2]
c) Minimum fluidization velocity	[6]
d) Terminal velocity of the particles	[6]
e) Comment on the fluidization achieved: good/shallow/slugging	[2]
f) j-factor for mass transfer.	[2]
Note: There may be additional data in the problem, which is not needed to	
determine the asked parameters.	

Best Wishes