Birla Institute of Technology and Science, Pilani, Rajasthan 333 031 Comprehensive Quiz I Semester 2016-2017												
	itle: Chem		oratory		e Number: (ED BOOK	CHEM F110		Time: 60 minutes Date: 30.11.2016	A			
Note: There are two pages with 25 questions in all. Indicate the most appropriate answer by entering A, B, C or D (block capital letters only) in the box provided on the right hand side. Do not overwrite. Do not use pencil. Each correct answer will be awarded two (2) marks and 0.5 mark will be deducted for every wrong answer.												
ID No.:					Section	Number:						
Name: Name of Instructor:												
Number	of (X) corr	ect Answe	er:	(Y) W	rong Answe	r:	(Z) Not a	ttempted:				
Q.1: Degree of (A) NH ₄ OH	dissociation (B) LaCl ₃			ng compo I ₃ COONa		e determined v KOH	vithout Kol	hlrausch's law				
Q.2: The unit o (A) C V^{-1} m ² m	f molar cond ol ⁻¹ (ductivity is: (B) C V ⁻¹ s ⁻¹	¹ m mol ⁻¹		(C) C $V^{-1} s^{-1}$	$m^2 mol^{-1}$	(I	D) C V ⁻¹ s ⁻¹ m ³ mol ⁻¹				
	f chloroacet	ate and hyd		infinite di			⁻¹ cm ² , respe	⁻¹ cm ² . The equivalent ectively. The degree of				
					i) [Fe(NH ₃) ₃ (N			$[D_2)]_3[Co(NO_2)_6]_2$ and (iv)				
	$2H_2O$ were	dissolved in	water to prep					ct order of molar conductiv	ity			
(A) iii $>$ i $>$ ii $>$			i > ii > iv > i	iii	(C)	iii > iv > i > ii	i (I	$\mathbf{D}) \text{ iv } > \text{i} > \text{ii} > \text{iii}$				
Q.5: Assuming (A) $d_{yz} \sim d_{zx} < d_{yz}$ (C) $d_{yz} \sim d_{zx} \sim d_{xy}$	$_{y} < d_{z^{2}} < d_{x}$	2-y2	$(B) d_{yz}$	$\sim d_{zx} < d_{z^2}$	$\begin{split} & K_2 [Cu(C_2O_4)_2] \\ & < d_{xy} < d_{x^2 \text{-} y^2} \\ & < d_{x^2 \text{-} y^2} < d_{z^2} \end{split}$	$.2H_2O$, the cor	rrect order	of "d" orbital energy will be				
Q.6: The exper	imental data	for the read	ction: $A + B$ -	\rightarrow C + D,	is as follows:							
Reaction	[A] (M)	[B] (M)	Rate (mol	$L^{-1} s^{-1}$)								
2	0.010	0.030	$\begin{array}{c} 6.00 \text{ x } 10^{-4} \\ 1.50 \text{ x } 10^{-3} \end{array}$									
3	0.055	0.030	1.82×10^{-2}									
The order of the $(A) 0$		r.t. reagent (B) 1	t A will be	(C) 2		(D) 3						
Q.7: The percer molar extinction					ssing through	a solution hav	ving path le	ngth (L) = $1/\epsilon.c$; where ' ϵ ' i	s			
(A) 1		(B) 10	,	(C) 90		(D) 100						
Q.8: The role of (A) oxidize hyp		odometric t (B) reduce I		(C) exp	el trapped I ₂	(D) remo	ove O ₂					
	$a_2S_2O_3 \rightarrow$	Na $\mathbf{I} + \mathbf{Q}$		g Q , R an	d S							
$CuSO_4 + KI \rightarrow \mathbf{R} + \mathbf{S} + K_2SO_4$ (A) $\mathbf{Q} = Na_2S_4O_6$; $\mathbf{R} = Cu_2I_2$; $\mathbf{S} = I_2$ (C) $\mathbf{Q} = Na_2S_2O_4$; $\mathbf{R} = Cu_2I$; $\mathbf{S} = I_3^-$				(B) $\mathbf{Q} = Na_2S_2O_4$; $\mathbf{R} = CuI_2$; $\mathbf{S} = I_3^-$ (D) $\mathbf{Q} = Na_2S_2O_6$; $\mathbf{R} = CuI$; $\mathbf{S} = I_2$								
	.70 ml of EI			ardness of				i.e., to reach the end point) s				
Q.11: EDTA fo (A) Ca ²⁺		st stable cor (B) Mg ²⁺	nplex with	(At (C) Fe ²	. No:; Mg =12	c, $Ca = 20$, $Fe = (D) Co^{2+}$		27)				
Q.12: Which of (A) By measure (B) A solution (C) The pH of (D) Ammonium	ng the poter stabilizing t a buffer solu	ntial of a gla he pH below ation contain	ass electrode, w 7 is called a ning equal co	the pH of acid buffe ncentratio	r.		jugate base	s is equal to pKa of the acid				

J

1

Q.13: Which of the following combination of substances may be added to water so as to prepare 1 L of a buffer solution?(A) 1 mole of CH ₃ COOH and 0.5 mole of HCl(B) 1 mole of NH ₄ OH and 0.5 mole of NaOH(C) 1 mole of NH ₄ Cl and 0.5 mole of HCl(D) 1 mole of CH ₃ COOH and 0.5 mole of NaOH												
Q.14: During titration of neutralized, will be (A) 4.2	a weak acid ($K_a = 2.0 X 1$ (B) 4.4	0 ⁻⁵) using a strong l (C) 4.		e solution when ha (D) 5	If of the acid is							
Q.15: Which of the follow (A) Oxalic acid				ccinic acid		\square						
Q.16: The red precipitate (A) cupric hydroxide		neated with "Fehlin			(D) cuprous oxide							
Q.17: An organic composition consistent with this obsert (A) <i>n</i> -Pentanal		-	ted with 2,4-dinit		-							
(A) <i>n</i> -Pentanal(B) Pentanoic acid(C) Methyl pentanoate(D) PentamideQ.18: The correct structure of a compound exhibiting spectral data $\delta = 3.75$ (s, 6H), 7.34 (d, 2H, $J = 16$ Hz), 7.81 (d, 4H, $J = 6.5$ Hz), 8.05 (d, 2H, $J = 16$ Hz), 8.32 (d, 4H, $J = 6.5$ Hz) in proton NMR spectroscopy is(D) Pentamide												
	(B) H ₄ OO		COH.									
(0)	(D) (O O O O O O O O										
Q.19: The following reaction was performed under two conditions, (i) an increase in amount of H ₂ and (ii) an increase in total pressure: $H_2(g) + 1/2O_2(g) \rightleftharpoons H_2O(g)$ The correct inference about this reaction equilibrium at 25 °C will be (A) amount of H ₂ O will increase in condition (i) and (ii) (B) amount of H ₂ O will decrease in condition (i) and ecrease for condition (ii) (C) amount of H ₂ O will increase for condition (i) and increase for condition (ii) (D) amount of H ₂ O will decrease for condition (i) and increase for condition (ii)												
(D) another of Π_2^{20} with a Q.20: A reaction mixture for the reaction: PCl ₃ (g) (A) $\frac{x P}{(3-x)}$	is composed of 1.0 mol of	PCl_3 and 2.0 mol	of Cl ₂ . Assume x	l_5 (g) if the total pr								
Q.21 : The number of mol (A) 1	es of water released durin (B) 2	g one mole synthes (C) 3	is of dibenzalacet (D) 4	tone is/are								
Q.22: Which one is the be (A) Acetophenone (est electrophile for cross-a B) Benzaldehyde	ldol reaction with a (C) 4-Methoxyb		(D) 4-H	Fluorobenzaldehyde							
Q.23: Keeping the identical condition of stationary and mobile phase that you used in your TLC experiment, if the three compounds namely benzoic acid, acetophenone and m-nitroacetophenone are eluted, then the R _f value of (A) benzoic acid > m-nitroacetophenone > acetophenone (B) acetophenone > benzoic acid > m-nitroacetophenone (C) acetophenone > m-nitroacetophenone > benzoic acid (D) benzoic acid > acetophenone > m-nitroacetophenone												
Q.24: To prepare 1 g of dibenzalacetone, the required amount of benzaldehyde is(A) 0.906 g(B) 1.104 g(C) 0.453 g(D) 2.207 g												
Q.25: In a reversible cher temperature and volume, (A) be halved	nical reaction at equilibriu then the equilibrium const (B) remain unchanged		-	f the reactants is do (D) become one-								
