Do not overwrite. Do not use pencil. Each correct answer will be awarded two (2) marks and 0.5 mark will be deducted for every wrong answer.
\qquad

Section Number:

Name:
Name of Instructor:

Number of (X) correct Answer:

(Y) Wrong Answer:
(Z) Not attempted:
Q.1: Degree of dissociation of which of the following compounds cannot be determined without Kohlrausch's law
(A) $\mathrm{NH}_{4} \mathrm{OH}$
(B) LaCl_{3}
(C) $\mathrm{CH}_{3} \mathrm{COONa}$
(D) KOH
Q.2: The unit of molar conductivity is:
(A) $\mathrm{C} \mathrm{V}^{-1} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(B) $\mathrm{C} \mathrm{V}^{-1} \mathrm{~s}^{-1} \mathrm{~m} \mathrm{~mol}^{-1}$
(C) $\mathrm{C} \mathrm{V}^{-1} \mathrm{~s}^{-1} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(D) $\mathrm{C} \mathrm{V}^{-1} \mathrm{~s}^{-1} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$

Q.3: The equivalent conductance of a 0.014 N solution of chloroacetic acid $\left(\mathrm{ClCH}_{2} \mathrm{COOH}\right)$ is $109 \Omega^{-1} \mathrm{~cm}^{2}$. The equivalent conductances of chloroacetate and hydrogen ions at infinite dilution are 40.2 and $348.8 \Omega^{-1} \mathrm{~cm}^{2}$, respectively. The degree of dissociation of the acid is
(A) 0.103
(B) 0.279
(C) 0.312
(D) 0.481
Q.4: Each of the given complexes, (i) $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$, (ii) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$, (iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$ and (iv) $\mathrm{K}_{2}\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ were dissolved in water to prepare their respective 0.001 M solution. The correct order of molar conductivity exhibited by the complex solutions will be
(A) iii $>$ i $>$ ii $>$ iv
(B) i $>$ ii $>$ iv $>$ iii
(C) iii $>$ iv $>$ i $>$ ii
(D) iv $>$ i $>$ ii $>$ iii
Q.5: Assuming the square planer geometry for the complex, $\mathrm{K}_{2}\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the correct order of " d " orbital energy will be
(A) $\mathrm{d}_{\mathrm{yz}} \sim \mathrm{d}_{\mathrm{zx}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
(B) $\mathrm{d}_{\mathrm{yz}} \sim \mathrm{d}_{\mathrm{zx}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
(C) $\mathrm{d}_{\mathrm{yz}} \sim \mathrm{d}_{\mathrm{zx}} \sim \mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
(D) $\mathrm{d}_{\mathrm{yz}} \sim \mathrm{d}_{\mathrm{zx}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}<\mathrm{d}_{\mathrm{z}^{2}}$

Q.6: The experimental data for the reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, is as follows:

Reaction	$[\mathbf{A}](\mathbf{M})$	$[\mathbf{B}](\mathbf{M})$	Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathbf{s}^{-1}\right)$
1	0.010	0.030	6.00×10^{-4}
2	0.010	0.075	1.50×10^{-3}
3	0.055	0.030	1.82×10^{-2}

The order of the reaction w.r.t. reagent \mathbf{A} will be
(A) 0
(B) 1
(C) 2
(D) 3
Q.7: The percentage reduction in intensity of incident light passing through a solution having path length $(\mathrm{L})=1 / \varepsilon . c$; where ' ε ' is molar extinction coefficient, and ' c ' is concentration, will be:
(A) 1
(B) 10
(C) 90
(D) 100

Q.8: The role of KSCN in iodometric titration is to
(A) oxidize hypo
(B) reduce I_{2}
(C) expel trapped I_{2}
(D) remove O_{2}
Q.9: Complete the chemical equations by identifying \mathbf{Q}, \mathbf{R} and \mathbf{S}

$$
\begin{aligned}
& \mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{NaI}+\mathbf{Q} \\
& \mathrm{CuSO}_{4}+\mathrm{KI} \rightarrow \mathbf{R}+\mathbf{S}+\mathrm{K}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

(A) $\mathbf{Q}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} ; \mathbf{R}=\mathrm{Cu}_{2} \mathrm{I}_{2} ; \mathbf{S}=\mathrm{I}_{2}$
(B) $\mathbf{Q}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} ; \mathbf{R}=\mathrm{CuI}_{2} ; \mathbf{S}=\mathrm{I}_{3}$
(C) $\mathbf{Q}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} ; \mathbf{R}=\mathrm{Cu}_{2} \mathrm{I} ; \mathbf{S}=\mathrm{I}_{3}{ }^{-}$
(D) $\mathbf{Q}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{6} ; \mathbf{R}=\mathrm{CuI} ; \mathbf{S}=\mathrm{I}_{2}$
Q.10: A sample of water (35 ml) was titrated with 0.01 M EDTA solution. If the complete titration (i.e., to reach the end point) with EBT required 9.70 ml of EDTA solution, the total hardness of the water sample (in ppm of CaCO_{3}) is. \qquad .(At. Wt. of $\mathrm{Ca}=40$)
(A) 277
(B) 208
(C) 232
(D) 248
Q.11: EDTA forms the most stable complex with (At. $\mathrm{No}: ; \mathrm{Mg}=12, \mathrm{Ca}=20, \mathrm{Fe}=26, \mathrm{Co}=27$)
(A) Ca^{2+}
(B) Mg^{2+}
(C) Fe^{2+}
(D) Co^{2+}
Q.12: Which one of the following statements is wrong?
(A) By measuring the potential of a glass electrode, the pH of a solution is determined.
(B) A solution stabilizing the pH below 7 is called acid buffer.

(C) The pH of a buffer solution containing equal concentration of a weak acid and its conjugate base is equal to pKa of the acid.
(D) Ammonium chloride solution has a pH higher than 7.
Q.13: Which of the following combination of substances may be added to water so as to prepare 1 L of a buffer solution?
(A) 1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 mole of HCl
(B) 1 mole of $\mathrm{NH}_{4} \mathrm{OH}$ and 0.5 mole of NaOH
(C) 1 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ and 0.5 mole of HCl
(D) 1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 mole of NaOH
Q.14: During titration of a weak acid $\left(\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-5}\right)$ using a strong base, the pH of the solution when half of the acid is neutralized, will be
(A) 4.2
(B) 4.4
(C) 4.7
(D) 5
Q.15: Which of the following is not classified as a dicarboxylic acid?
(A) Oxalic acid
(B) Tartaric acid
(C) Citric Acid
(D) Succinic acid
Q.16: The red precipitate, formed when glucose is heated with "Fehling's solution" is
(A) cupric hydroxide
(B) cuprous hydroxide
(C) cupric oxide
(D) cuprous oxide
Q.17: An organic compound produces an orange precipitate when treated with 2,4-dinitrophenylhydrazine. Which compound is consistent with this observation?
(A) n-Pentanal
(B) Pentanoic acid
(C) Methyl pentanoate
(D) Pentamide
Q.18: The correct structure of a compound exhibiting spectral data $\delta=3.75(\mathrm{~s}, 6 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=16 \mathrm{~Hz}), 7.81(\mathrm{~d}, 4 \mathrm{H}, J=$ $6.5 \mathrm{~Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=16 \mathrm{~Hz}), 8.32(\mathrm{~d}, 4 \mathrm{H}, J=6.5 \mathrm{~Hz})$ in proton NMR spectroscopy is
(A)

(B)

(C)

(D)

Q.19: The following reaction was performed under two conditions, (i) an increase in amount of H_{2} and (ii) an increase in total pressure:

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The correct inference about this reaction equilibrium at $25^{\circ} \mathrm{C}$ will be
(A) amount of $\mathrm{H}_{2} \mathrm{O}$ will increase in condition (i) and (ii)
(B) amount of $\mathrm{H}_{2} \mathrm{O}$ will decrease in condition (i) and (ii)
(C) amount of $\mathrm{H}_{2} \mathrm{O}$ will increase for condition (i) and decrease for condition (ii)
(D) amount of $\mathrm{H}_{2} \mathrm{O}$ will decrease for condition (i) and increase for condition (ii)
Q.20: A reaction mixture is composed of 1.0 mol of PCl_{3} and 2.0 mol of Cl_{2}. Assume x be the amount of $\mathrm{PCl}_{5}(\mathrm{~g})$ at equilibrium for the reaction: $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$. What would be the partial pressure of $\mathrm{PCl}_{5}(\mathrm{~g})$ if the total pressure is P .

(A) $\frac{x P}{(3-x)}$
(B) $\frac{x P}{(1-x)}$
(C) $\frac{x P}{(2-x)}$
(D) $\frac{(1-x) P}{(3-x)}$
Q.21: The number of moles of water released during one mole synthesis of dibenzalacetone is/are ... \qquad
(A) 1
(B) 2
(C) 3
(D) 4
Q.22: Which one is the best electrophile for cross-aldol reaction with acetone?
(A) Acetophenone
(B) Benzaldehyde
(C) 4-Methoxybenzaldehyde
(D) 4-Fluorobenzaldehyde
Q.23: Keeping the identical condition of stationary and mobile phase that you used in your TLC experiment, if the three compounds namely benzoic acid, acetophenone and m-nitroacetopheneone are eluted, then the R_{f} value of
(A) benzoic acid > m-nitroacetophenone > acetophenone
(B) acetophenone $>$ benzoic acid $>$ m-nitroacetophenone
(C) acetophenone $>\mathrm{m}$-nitroacetophenone $>$ benzoic acid
(D) benzoic acid > acetophenone > m-nitroacetophenone
Q.24: To prepare 1 g of dibenzalacetone, the required amount of benzaldehyde is
(A) 0.906 g
(B) 1.104 g
(C) 0.453 g
(D) 2.207 g
Q.25: In a reversible chemical reaction at equilibrium, if the concentration of any one of the reactants is doubled at constant temperature and volume, then the equilibrium constant will
(A) be halved
(B) remain unchanged
(C) be doubled
(D) become one-fourth

