CHEM F111 GENERAL CHEMISTRY
 Comprehensive Examination-PART II (OPEN Book) Max. Marks: 70
 Duration: $\mathbf{1 2 0}$ minutes
 Date: December 10, 2016

$\overline{\text { NOTE: There are FIVE questions in all. Attempt all the questions. Start answering each question on a fresh page and }}$ answer all parts of the question together. Pencil should not be used. Symbols have usual meanings. Do not scribble on the question paper.
USEFUL DATA: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Mass of electron $=9.109 \times 10^{-31} \mathrm{~kg} ; 1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg} ; a_{o}=0.529 \AA ; h=6.626$ $\times 10^{-34} \mathrm{Js} ; R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; R_{H}=109677 \mathrm{~cm}^{-1} ; 1$ bar $=101.3 \mathrm{kPa}$
Q. 01. (a) When an electric discharge is passed through a particular sample of gaseous hydrogenic ion M^{2+}, it produces the electromagnetic spectrum corresponding to the lowest frequency in the Paschen series. What will be the energy (in Joule) required to produce M^{3+} ion from the above irradiated sample?
(b) Looking at the hydrogenic orbital (Fig. 1), write your answer in tabular form in answer sheet.

No. of Radial Nodes	No. of Angular Nodes	Orbital

(c) Assume the carbon molecule C_{32} as a rigid sphere (having radius $2.5 \AA$) and the electrons of the molecule as being confined to the surface of the sphere. The wavelength of light necessary to cause a transition of an electron from state l to $l+1$ is 127 nm . Calculate the value of l.
(d) Write the ground state term for Fe^{3+} ion.
Q. 02. (a) Consider a substituted ethylene molecule having a general structure (Fig. 2). Comment on rotational activity in the microwave spectrum in one/two lines, for the molecules with (i) $R_{1}=R_{2}=R_{3}=R_{4}=H$, (ii) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{F} ; \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$.

Fig. 2

Fig. 3 (Mode A)

(b) Comment on the IR activity of the following two vibrational modes (Fig. 3: Mode A; Fig. 4: Mode B) with $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$: [Arrows on each atom represents relative movement of the atoms]
(c) The compound 1,1,2-tribromo-2-chloroethane (Fig. 5) shows two doublets in proton NMR (${ }^{1} \mathrm{H}$ NMR) spectrum centered at $\delta 5.3$ (lines p, q) and $\delta 5.5$ (lines r, s) respectively, when run at 100 MHz . If sample is run in a 500 MHz NMR instrument and spectrum obtained in a frequency domain (frequency plotted on x -axis), how will the separation between the following lines vary? (i) Line p and line q; (ii) Line q and line r. Provide ONE-LINE explanation for each.
(d) The spectral transitions of HF_{2}^{-}in isolated alkali metal salts are listed here.

Fig. 5 Determine the geometry of the anion. $1550 \mathrm{~cm}^{-1}$ (IR active), $1200 \mathrm{~cm}^{-1}$ (IR active), and $675 \mathrm{~cm}^{-1}$ (Raman active).
(e) Consider the elementary reactions and their respective activation energies $\left(\mathrm{E}_{\mathrm{a}}\right)$ and Arrhenius constants (A)

$$
\begin{array}{lll}
\mathrm{H} \cdot+\mathrm{F}_{2} \rightarrow \mathrm{HF}+\mathrm{F} \cdot & \mathrm{E}_{\mathrm{a}}=+10 \mathrm{kJmol}^{-1} & \mathrm{~A}=9 \times 10^{9} \\
\mathrm{HF}+\mathrm{F} \cdot \rightarrow \mathrm{H} \cdot+\mathrm{F}_{2} & \mathrm{E}_{\mathrm{a}}=+422 \mathrm{kJmol}^{-1} & \mathrm{~A}=1.3 \times 10^{10}
\end{array}
$$

(i) Calculate the equilibrium constant for the reversible reaction at $127^{\circ} \mathrm{C}$
(ii) Determine the Gibb's free energy change for the reversible reaction at $127^{\circ} \mathrm{C}$.
Q. 03. (a) Chemical reactions proceed by the initial loss or gain of an electron to a diatomic species $\left(\mathrm{A}_{2}\right)$. Which of the molecules, F_{2} and C_{2} would you expect to be stabilized by (i) the addition of an electron to form an anion ($\mathrm{A}_{2}{ }^{-}$), (ii) the removal of an electron to form a cation $\left(\mathrm{A}_{2}{ }^{+}\right)$? Justify your answer in TWO LINES.
(b) Calculate the following parameters as mentioned in the given tabular format for the two complexes in high spin states of $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$and $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$. (Write your answer in tabular form in answer sheet).

Complexes	No. of unpaired electrons	Magnetic moments	Geometry	CFSE (in Δ_{0}) (Ignore pairing energy)
$\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$				
$\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$				

(c) Show that the $s p^{2}$ hybrid orbital $\left(\mathrm{s}+2^{1 / 2} \mathrm{p}_{\mathrm{x}}\right) / 3^{1 / 2}$ is normalized, where s and p_{x} are hydrogenic orbitals.
(d) Consider two octahedral complexes, $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$: (i) Which of the given complexes will have larger value of Δ_{O} ? (ii) Which of the given complexes will show stronger Jahn Teller distortion? Justify your answer in ONE LINE. (iii) Specify the type of distortion (z-elongation and z-compression) and the order of d-orbital energies.
Q. 04 (a) Based on figure 6, complete the table given below (Write your answer in tabular form in answer sheet). [4]

Stereochemical relationship between		In IV, absolute configuration (R/S) about	
I and II	III and IV	Front chiral carbon	Back chiral carbon

(b) For the following cycloaddition reaction (Fig. 7), identify structures of $\mathbf{P}, \mathbf{Q}, \mathbf{M}, \mathbf{N}$ and reaction condition.

Fig. 7
(c) The energy for 1,3-diaxial interaction between hydrogen and a substituent in a monosubstituted cyclohexane is $1.98 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. Calculate the amount (number of moles) of axial and equatorial conformers present in five moles of the monosubstituted cyclohexane at $25^{\circ} \mathrm{C}$, considering the entropy change is negligible for the conformational interconversion.
Q. 05. (a) An alcoholic compound A reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce a stable conjugated compound $\mathbf{B}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ that possesses a permanent dipole-moment. Identify the structure compound \mathbf{B}, propose a mechanism for its formation and provide reason for permanent dipole moment.

(b) Write the structures of compounds \mathbf{X} and \mathbf{Y} obtained in the following transformation (Fig. 8) using an optically active halide. Also, comment on the optical activity of product \mathbf{Y}.

Fig. 8
(c) Write the reaction conditions $(\mathbf{C} \& \mathbf{D})$ and intermediate compounds ($\mathbf{E} \& \mathbf{F}$) involved in the following transformation (Fig. 9).

Fig. 9
END

