Comprehensive Examination, First Semester 2022-2023
Course No: CHEM F111 Course Title: General Chemistry
Date: 23 Feb 2023
Maximum Marks: 48
PART-A: CLOSED BOOK
Max. Time: 70 min
Given are commonly used data, notations have usual meanings; $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{k}=1.38 \times 10^{-23} \mathrm{JK} \mathrm{K}^{-1}$.
At. No. $\mathrm{Cr}=24, \mathrm{Fe}=26 . \mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$

- There are TWO questions printed on both sides of the question paper

Important Instructions

- Answer all questions in the provided answer booklet only
- DO NOT use pencils for answering any part
- Start answering each question from a fresh page, all sub-sections together
- Part-B can be taken ONLY after submitting Part-A
Q. 1. Consider the following conversion of an octahedral Fe^{2+} complex given schematically. Here, en $=$ ethylenediamine; $\mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{O}=$ weak ligand field, and NH_{3}, en $=$ strong ligand field. Based on this scheme answer the following questions (\mathbf{a} to \mathbf{d}):

(a) Identify the type of distorted geometry (tetragonal elongation or compression) expected to observe for the complex A. Justify your answer in no more than 3-4 sentences.
(b) Identify the ground state term of Fe^{2+} in the complex \mathbf{B}. In the electronic spectrum of the complex \mathbf{B}, theoretically, one transition is expected based on the ground state term. Using Mulliken symbols DRAW the Orgel energy level diagram for the electronic transition in the complex \mathbf{B} with proper labeling.
(c) (I) Calculate CFSE (in $\mathbf{c m}^{-\mathbf{1}}$) of the complex \mathbf{C} if $\Delta_{\mathrm{o}}=11,400 \mathrm{~cm}^{-1}$? Ignore the effect of pairing energy during the CFSE calculation. (II) Identify the magnetic behavior (paramagnetic or diamagnetic) of the complex ion \mathbf{C} with one line justification.
(d) (I) Identify the complex ion \mathbf{D} and write the formula in a proper format (coordination complex form). (II) Identify the most stable complex out of \mathbf{A} to \mathbf{D} and justify your answer in one sentence. (III) Calculate the overall formation constant ($\boldsymbol{\beta}$) for complex \mathbf{D} at $28^{\circ} \mathrm{C}$, if the standard enthalpy and entropy changes are - 13 $\mathrm{kJ} / \mathrm{mol}$ and $0.19 \mathrm{~kJ} / \mathrm{mol} / \mathrm{K}$, respectively?
(e) (I) Find the strength (in T) of the required magnetic field of a NMR instrument for a proton $\left({ }^{1} \mathrm{H}\right)$ nucleus to resonate at the operating frequency 30.5 MHz . Given, nuclear magnetic moments (μ_{I}) of ${ }^{1} \mathrm{H}$ is $2.7927 \mu_{\mathrm{N}}$; $I=1 / 2$ for ${ }^{1} \mathrm{H}$ nucleus; and $\mu_{\mathrm{N}}=5.05 \times 10^{-27} \mathrm{JT}^{-1}$. (II) $\mathrm{The}_{\mathrm{CH}_{3}-}$ and CH_{2} - protons of $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$ are 118 Hz and 185 Hz downfield shifted from TMS, respectively, in a 80 MHz NMR spectrometer. What will be the frequency shifts (in $\mathbf{H z}$) of those same protons in a 300 MHz NMR spectrometer?
Q. 2 (a) Write the structures (with appropriate stereochemistry wherever applicable) of reactant/major product ($\mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R} \& \mathrm{~S}$) and reaction conditions (T) for the following transformations.

(iii) $\mathrm{O}+\mathrm{P} \xrightarrow{\text { heat }}$
(iv)

(b) Identify the major and minor products for the elimination reactions of compounds \mathbf{X} and \mathbf{Y} with sodium ethoxide. Briefly explain the formation of the appropriate product(s) by drawing Newman projection of the conformations of \mathbf{X} and \mathbf{Y} involved in the elimination reaction. Also determine in each case if the reaction is stereoselective or stereospecific.

(c) Azulene (Z) shows a relatively large dipole moment (1.08 debye). Briefly explain why dipole moment arises in \mathbf{Z} even though it is composed of carbon-carbon and carbon-hydrogen bonds. Also, write the number of π electrons in Azulene.

(d) Identify whether the following pairs of compounds are enantiomers, diastereomers or identical.
(i)

(ii)

