	Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333 031		
	Comprehensive Examination, First Semester 2022-2023		
रामि परम बलग	Course No: CHEM F111	Course Title: General Chemistry	Date: 23 Feb 2023
Maximum Marks: 48		PART-A: CLOSED BOOK	Max. Time: 70 min
Given are commonly used data, notations have usual meanings; $h = 6.626 \times 10^{-34}$ J.s, $k = 1.38 \times 10^{-23}$ JK ⁻¹ .			
At. No. $Cr = 24$, $Fe = 26$. $R = 8.314 \text{ J/(mol.K)}$			
There are TWO questions printed on both sides of the question paper			
Important Instruction	Answer all questions in the provided answer booklet only		
	DO NOT use pancils for answering any part		
	Start answering each question from a fresh page, all sub-sections together		
	Part-B can be taken ONLY after submitting Part-A		

Q. 1. Consider the following conversion of an octahedral Fe^{2+} complex given schematically. Here, en = ethylenediamine; Cl⁻, H₂O = weak ligand field, and NH₃, en = strong ligand field. <u>Based on this scheme</u> answer the following questions (**a** to **d**):

(a) Identify the type of distorted geometry (tetragonal elongation or compression) expected to observe for the complex A. Justify your answer in no more than 3-4 sentences. [4]

(b) Identify the ground state term of Fe^{2+} in the complex **B**. In the electronic spectrum of the complex **B**, theoretically, one transition is expected based on the ground state term. Using Mulliken symbols DRAW the Orgel energy level diagram for the electronic transition in the complex **B** with proper labeling. [3]

(c) (I) Calculate CFSE (in cm⁻¹) of the complex C if $\Delta_0 = 11,400 \text{ cm}^{-1}$? Ignore the effect of pairing energy during the CFSE calculation. (II) Identify the magnetic behavior (paramagnetic or diamagnetic) of the complex ion C with one line justification. [2+2]

(d) (I) Identify the complex ion **D** and write the formula in a proper format (coordination complex form). (II) Identify the most stable complex out of **A** to **D** and justify your answer in one sentence. (III) Calculate the overall formation constant (β) for complex **D** at 28 °C, if the standard enthalpy and entropy changes are -13 kJ/mol and 0.19 kJ/mol/K, respectively? [6]

(e) (I) Find the strength (in T) of the required magnetic field of a NMR instrument for a proton (¹H) nucleus to resonate at the operating frequency 30.5 MHz. Given, nuclear magnetic moments (μ_I) of ¹H is 2.7927 μ_N ; I = 1/2 for ¹H nucleus; and $\mu_N = 5.05 \times 10^{-27}$ JT⁻¹. (II) The CH₃- and CH₂- protons of CH₃-CH₂-Cl are 118 Hz and 185 Hz downfield shifted from TMS, respectively, in a 80 MHz NMR spectrometer. What will be the frequency shifts (in Hz) of those same protons in a 300 MHz NMR spectrometer? [3+4]

Page **1** of **2**

DO NOT SCRIBBLE ON THE QUESTION PAPER

Q. 2 (a) Write the structures (with appropriate stereochemistry wherever applicable) of reactant/major product (M, N, O, P, Q, R & S) and reaction conditions (T) for the following transformations. [11]

(b) Identify the major and minor products for the elimination reactions of compounds X and Y with sodium ethoxide. Briefly explain the formation of the appropriate product(s) by drawing Newman projection of the conformations of X and Y involved in the elimination reaction. Also determine in each case if the reaction is stereoselective or stereospecific.
[6]

(c) Azulene (Z) shows a relatively large dipole moment (1.08 debye). Briefly explain why dipole moment arises in Z even though it is composed of carbon-carbon and carbon-hydrogen bonds. Also, write the number of π electrons in Azulene. [3]

(d) Identify whether the following pairs of compounds are enantiomers, diastereomers or identical. [4]

DO NOT SCRIBBLE ON THE QUESTION PAPER