Birla Institute of Technology \& Science, Pilani (Pilani Campus)

MIDSEM EXAMINATION, SECOND SEMESTER 2022-23

Course Title: General Chemistry
$3{ }^{\text {rd }}$ May 2023

Course No. CHEM F111
CLOSED BOOK

Duration: 90 min .
Maximum Marks: 90

Instructions to the students:

- Do not do rough work on question paper.
- Do not use pencil for writing answer.
- Answer all parts of a question together.
- Useful data (notations have usual meanings): $k=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}, c=3 \times 10^{8} \mathrm{~ms}^{-1} ; m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$; $h=6.626 \times 10^{-34} \mathrm{Js} ; R_{H}=109677 \mathrm{~cm}^{-1} ; 1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg} ; \mathrm{a}_{0}=52.9 \mathrm{pm}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.
Q1. (a) What is the speed of an electron emitted by Li, if light having a frequency of $4.77 \times 10^{15} \mathrm{~s}^{-1}$ is absorbed, given that the work function of Li is 2.9 eV ?
(b) Calculate the de Broglie wavelength of (i) a 1000 kg automobile traveling at $100 \mathrm{~km} / \mathrm{h}$, and (ii) an electron traveling at 1% of the speed of light. Based on the result comment on the applicability of the quantum concept. [5]
(c) Consider an electron having a one-dimensional wavefunction $\sqrt{2} \sin \pi x, 0 \leq x \leq 1$. Calculate (i) normalization constant, and (ii) probability that the electron is in the first half of the range, from $x=0$ to 0.5 .
(d) Write out the operator \hat{A}^{2} when \hat{A} is defined as $\frac{d}{d y}+y^{2}$.
(e) Consider a particle of mass m. (i) Determine the average momentum, $\langle p\rangle$, for the ground state when confined in a one-dimension box of length L and show step-by-step calculations. (ii) Write all the associated wavefunctions when the energy of the particle is $\frac{27 h^{2}}{8 m L^{2}}$ for three-dimensional cubical box of length L.

Q2. (a) The spherical harmonic function, $Y_{l, m}(\theta, \phi)$ is an eigen function of $\hat{L}_{x}^{2}+\hat{L}_{y}^{2}$ operator. Find its corresponding eigen value in terms of l, m_{l}, and \hbar (Symbols l, m_{l}, and \hbar have usual meaning).
(b) A radial wavefunction of hydrogen atom is given below, where $\rho=\frac{2 Z r}{a_{0}}, a_{o}$ is the Bohr radius and r is the radial variable.

$$
\frac{1}{27 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}\left(4 \rho-\frac{\rho^{2}}{3}\right) e^{-\frac{\rho}{6}}
$$

(i) Identify the orbital corresponding to this wavefunction and calculate the energy (in $\mathbf{e V}$) of an electron in this orbital?
(ii) Find the number of radial and angular nodes, and the location(s) of the radial node(s) in terms of a_{0}. [2+2]
(iii) Depict the radial wavefunction plot and the radial density distribution plot of the orbital, clearly labeling both the X and Y -axes.
(c) The normalized ground state wavefunction of hydrogen is provided below, where a_{0} is the Bohr radius.

$$
\psi_{1 s}=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{\left(-r / a_{0}\right)}
$$

(i) Calculate the average of $1 / r$ for an electron in the ground state.
(ii) Calculate the probability for the electron to be confined in a sphere of radius $r=a_{0}$.

Q3. (a) (i) Derive all the possible singlet term symbols for the configuration $\mathrm{p}^{1} \mathrm{~d}^{1}$, and (ii) write the total number of states that will be observed for each term symbol.
(b) Find the lowest energy term symbol for the ground state of Mn^{2+} ion (At. no. 25)
(c) (i) For the species $\mathrm{N}_{2}{ }^{2-}$ and $\mathrm{O}_{2}{ }^{2-}$, write the MO electronic configuration as per the convention taught in the course.
(ii) Calculate the bond orders for these species.

$$
[2+2=4]
$$

(d) Fill up the following table by drawing appropriate pictures for bonds formed by overlapping of two p-orbitals. [4]

Bond	Orbitals	Bonding, show g or u
σ Antibonding, show g or u		
σ-bond		
π-bond		

(Note: Answer by drawing above table in answer-sheet)
(e) Determine the value of the normalization constant for the bonding MO of a hydrogen molecule. Given, the value of the overlap integral (S) between the atomic orbitals $\varphi_{1 s_{A}}$ and $\varphi_{1 s_{B}}$ is 0.59 , where $\varphi_{1 s_{A}}$ and $\varphi_{1 s_{B}}$ are the normalized atomic orbitals of H -atoms concerned.
Q4. (a) In the rotational Raman spectrum of a ${ }^{19} \mathrm{~F}_{2}$, the displacement from exciting line ($\bar{\nu}_{\text {ex. }}$) is represented by $\Delta \bar{\nu}_{\text {rot }}=(10.68 J \pm 16.02) \mathrm{cm}^{-1}$. Calculate (i) rotational constant, B (ii) moment of inertia, I and (iii) bond length of the molecule.
(b) Calculate the ratio of population of molecules in the $\mathrm{J}=1$ and $\mathrm{J}=0$ rotational levels for ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ (assume it as a rigid rotor) at $25^{\circ} \mathrm{C}$ (given that $\mathbf{I}=1.45 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}$).
(c) The wavenumber of the fundamental vibrational transition for ${ }^{79} \mathrm{Br}^{81} \mathrm{Br}$ is $323.2 \mathrm{~cm}^{-1}$. Calculate the force constant of the bond.
(d) The transmittance of 5.28 ppm aqueous solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{MW}=294.18 / \mathrm{mol})$ in a 1.00 cm cell at 350 nm is 42.5%. Calculate its molar absorptivity at this wavelength.
(e) Arrange the following molecules (A-D) in the increasing order of $\mathrm{C}=\mathrm{O}$ stretching frequencies.

A

B

C

D
(f) Which of the following molecules (A-C) will not show a band corresponding to carbon-carbon triple bond stretching frequency in the IR spectra? Explain, why?

The END

