Birla Institute of Technology and Science, Pilani (Pilani Campus) COMPREHENSIVE EXAMINATION, SECOND SEMESTER 2022-23

Course Title: General Chemistry Course No. CHEM F111 Duration: 120 min. 12th July 2023 **OPEN BOOK** Maximum Marks: 80

Name:.....

ID.....

Instructions to the students: Do not do rough work on question paper. Do not use pencil for writing answer. Answer all parts of a question together.

Q1. (a) What will be the power (in Watts) radiated (due to flow of electric current) by the surface of a cylindrical object of length 10.0 cm and radius 0.10 mm that is heated to 3000 K. Neglect the power emitted from the surfaces at the two end of the object. [4]

(b) Assume the carbon allotrope C_{32} as a rigid sphere (having radius 2.5Å) and the electrons of the molecule as being confined to the surface of the sphere. The wavelength of light necessary to cause a transition of an electron from state l to l + 1 is 127 nm. Calculate the value of l. [6]

(c) When an electric discharge is passed through a particular sample of gaseous Li^{2+} ion, it produces the electromagnetic spectrum corresponding to the lowest frequency in the Paschen series. What will be the energy (in Joule) required to produce Li^{3+} ion from the above irradiated sample? [4]

(d) What will be the de Broglie wavelength of an electron accelerated from rest through a potential difference of 1000 kV? [4]

(e) Evaluate angular momentum (P_{ϕ}) of a particle on a ring with $\Psi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$. [2]

Q. 2 (a) In the rotational spectrum of $^{79}Br^{19}F$, there are equally spaced lines that are 0.714 cm⁻¹ apart. Identify the levels involved in the most intense rotational transition at temperature 27 °C. [4]

(b) Which type of rotational spectroscopy would you use to determine the pure rotational spectrum of H_2 ? Considering the bond length of H_2 is 0.074 nm, calculate the spacing of the pure rotational transition lines in the rotational spectrum of H₂. [5]

(c) The bond length and force constant for ${}^{1}H^{35}Cl$ are found to be 127.5 pm and 516.3 Nm⁻¹, respectively. Calculate the zero-point energy and energy of the fundamental vibration band (**both in cm**⁻¹). [3]

Molecules	PhCH ₂ CH ₂ CHO	PhCH ₂ CH ₂ CO ₂ H	PhCH ₂ CO ₂ CH ₃	PhCOCH ₂ CN
	Α	В	С	D
v/cm ⁻¹	1730, 3300 (br)	1684 and 2200	1740, 1160, and 1257	1725, 2850 and 2730

(d) Match the following molecules to their characteristic IR peaks.

(e) The hydration energy (ΔH_{hvd}) of Cr²⁺ ion is - 460 kcal/mole (1 kcal/mole = 350 cm⁻¹) when it forms the $[Cr(H_2O)_6]^{2+}$ complex. The crystal field splitting energy of $[Cr(H_2O)_6]^{2+}$ is 13900 cm⁻¹. Calculate hydration energy (ΔH_{hvd}) when there is no crystal field stabilization. [4]

Q.3 (a) Calculate the additional stabilization energy for both Z-in and Z-out in $[Cr(NH_3)_6]^{3+}$ complex (Show the energy calculation steps clearly). Based on the additional stabilization energy calculation comment on the possibility of Jahn-Teller distortion in $[Cr(NH_3)_6]^{3+}$ complex. [3]

(b) Complex $[TiF_6]^{3-}$ exhibits mild Jahn-Teller distortion, but this effect on the nature of its electronic spectrum is pronounced significantly as a broad peak. Justify the observation with proper labeling of d-orbitals. [3]

(c) 1 mL of a 0.1 M metal solution and 1 mL of a 0.3 M ligand solution were mixed. The final concentration of the metal complex (ML₃) was 0.05 M. Calculate the overall stability constant (β_3) of the complex? [3]

[4]

(d) For compound given below, complete following table (Draw table in the answer sheet).

$\begin{array}{c} \mathbf{A} \\ \mathbf{OHC} \\ \mathbf{OHC} \\ \mathbf{OHC} \\ \mathbf{OCH}_{2}\mathbf{CH}_{3} \end{array}$						
Most shielded proton in the ¹ H NMR spectrum:	Integration of the peak for proton B :	Integration of the peak for proton D :	Number of peaks in proton decoupled ¹³ C-NMR spectrum.			
	Multiplicity of the peak for proton B :	Multiplicity of the peak for proton D :				

(e) (i) A 250 MHz ¹HNMR spectrum of a compound shows two peaks, one at a frequency 510 Hz higher than that of the reference compound (TMS) and the other at a frequency 280 Hz lower than that of the reference compound. What chemical shifts would be assigned to these two peaks? [4]

(ii) The nuclear magnetic moment of ³¹P is equal to 1.1305 nuclear magnetons, *i.e.*, 1.1305 μ_N . Calculate its magnetogyric ratio and the g-factor. [3]

Q4 (a) Convert following Newman projection to Fischer projection (with most oxidized carbon at vertically top position). Assign the absolute configuration (R/S) to each chiral center. [2+1]

(b) (i) Which one of the following dienes (A and B) would react faster on heating them individually at same temperature with acrylaldehyde (CH_2 =CHCHO). Provide explanation for your choice in 1-2 sentences. [1+1]

(ii) Write product(s) of the following electrocyclization reaction.

[2]

(c) State whether the chlorides (X, Y and Z) given below would yield an alkene on heating with sodium ethoxide. If yes, write the structure of the corresponding alkene(s). [5]

(d) Provide structure of the major product(s) with appropriate stereochemistry (if applicable) of the following reactions. [8]

