Birla Institute of Technology and Science, Pilani (Pilani Campus)
 COMPREHENSIVE EXAMINATION, SECOND SEMESTER 2022-23

Course Title: General Chemistry
$12^{\text {th }}$ July 2023
Name:

Course No. CHEM F111
 OPEN BOOK

Duration: 120 min .
Maximum Marks: 80

Instructions to the students: Do not do rough work on question paper. Do not use pencil for writing answer. Answer all parts of a question together.

Q1. (a) What will be the power (in Watts) radiated (due to flow of electric current) by the surface of a cylindrical object of length 10.0 cm and radius 0.10 mm that is heated to 3000 K . Neglect the power emitted from the surfaces at the two end of the object.
(b) Assume the carbon allotrope C_{32} as a rigid sphere (having radius $2.5 \AA$) and the electrons of the molecule as being confined to the surface of the sphere. The wavelength of light necessary to cause a transition of an electron from state l to $l+1$ is 127 nm . Calculate the value of l.
(c) When an electric discharge is passed through a particular sample of gaseous Li^{2+} ion, it produces the electromagnetic spectrum corresponding to the lowest frequency in the Paschen series. What will be the energy (in Joule) required to produce Li^{3+} ion from the above irradiated sample?
(d) What will be the de Broglie wavelength of an electron accelerated from rest through a potential difference of 1000 kV ?
(e) Evaluate angular momentum $\left(\mathrm{P}_{\phi}\right)$ of a particle on a ring with $\Psi=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}$.
Q. 2 (a) In the rotational spectrum of ${ }^{79} \mathrm{Br}^{19} \mathrm{~F}$, there are equally spaced lines that are $0.714 \mathrm{~cm}^{-1}$ apart. Identify the levels involved in the most intense rotational transition at temperature $27^{\circ} \mathrm{C}$.
(b) Which type of rotational spectroscopy would you use to determine the pure rotational spectrum of H_{2} ? Considering the bond length of H_{2} is 0.074 nm , calculate the spacing of the pure rotational transition lines in the rotational spectrum of H_{2}.
(c) The bond length and force constant for ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ are found to be 127.5 pm and $516.3 \mathrm{Nm}^{-1}$, respectively. Calculate the zero-point energy and energy of the fundamental vibration band (both in $\mathbf{c m}^{-1}$).
(d) Match the following molecules to their characteristic IR peaks.

Molecules	$\underset{\mathbf{A}}{\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}}$	$\underset{\text { B }}{\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}}$	$\begin{gathered} \mathrm{PhCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} \\ \mathbf{C} \end{gathered}$	$\underset{\text { D }}{\underset{\mathrm{PhCOCH}}{2}} \mathrm{CN}$
$\mathrm{v} / \mathrm{cm}^{-1}$	1730, 3300 (br)	1684 and 2200	1740, 1160, and 1257	1725, 2850 and 2730

(e) The hydration energy $\left(\Delta \mathrm{H}_{\text {hyd }}\right)$ of Cr^{2+} ion is $-460 \mathrm{kcal} / \mathrm{mole}\left(1 \mathrm{kcal} / \mathrm{mole}=350 \mathrm{~cm}^{-1}\right)$ when it forms the $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex. The crystal field splitting energy of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is $13900 \mathrm{~cm}^{-1}$. Calculate hydration energy $\left(\Delta \mathrm{H}_{\text {hyd }}\right)$ when there is no crystal field stabilization.
Q. 3 (a) Calculate the additional stabilization energy for both Z-in and Z-out in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complex (Show the energy calculation steps clearly). Based on the additional stabilization energy calculation comment on the possibility of Jahn-Teller distortion in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complex.
(b) Complex $\left[\mathrm{TiF}_{6}\right]^{3-}$ exhibits mild Jahn-Teller distortion, but this effect on the nature of its electronic spectrum is pronounced significantly as a broad peak. Justify the observation with proper labeling of d-orbitals.
(c) 1 mL of a 0.1 M metal solution and 1 mL of a 0.3 M ligand solution were mixed. The final concentration of the metal complex $\left(\mathrm{ML}_{3}\right)$ was 0.05 M . Calculate the overall stability constant $\left(\beta_{3}\right)$ of the complex?
(d) For compound given below, complete following table (Draw table in the answer sheet).

Most shielded proton in the ${ }^{1} \mathrm{H}$ NMR spectrum:	Integration of the peak for proton B:	Integration of the peak for proton D:	Number of peaks in proton decoupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum.		
Multiplicity of the peak					
for proton B:				\quad	Multiplicity of the peak
:---					
for proton D:	\quad	(
:---					

(e) (i) A $250 \mathrm{MHz}{ }^{1} \mathrm{HNMR}$ spectrum of a compound shows two peaks, one at a frequency 510 Hz higher than that of the reference compound (TMS) and the other at a frequency 280 Hz lower than that of the reference compound. What chemical shifts would be assigned to these two peaks?
(ii) The nuclear magnetic moment of ${ }^{31} \mathrm{P}$ is equal to 1.1305 nuclear magnetons, i.e., $1.1305 \mu_{\mathrm{N}}$. Calculate its magnetogyric ratio and the g-factor.

Q4 (a) Convert following Newman projection to Fischer projection (with most oxidized carbon at vertically top position). Assign the absolute configuration (R/S) to each chiral center.
[2+1]

(b) (i) Which one of the following dienes (\mathbf{A} and \mathbf{B}) would react faster on heating them individually at same temperature with acrylaldehyde $\left(\mathrm{CH}_{2}=\mathrm{CHCHO}\right)$. Provide explanation for your choice in $1-2$ sentences. $[\mathbf{1 + 1}]$

A

B
(ii) Write product(s) of the following electrocyclization reaction.

(c) State whether the chlorides $(\mathbf{X}, \mathbf{Y}$ and $\mathbf{Z})$ given below would yield an alkene on heating with sodium ethoxide. If yes, write the structure of the corresponding alkene(s).

X

Y

Z
(d) Provide structure of the major product(s) with appropriate stereochemistry (if applicable) of the following reactions.
(i)

(ii)

(iii)

(iv)

