Birla Institute of Technology and Science Pilani -333031, Rajasthan
 $1^{\text {st }}$ semester 2016-2017, Mid-Semester Test
 Course Title: Physical Chemistry I, Course No. CHEM F211
 Max Marks: 60, Time: 1 hr 30 mins, Date: 06.10.16

Answer all questions with proper units. Rough work can be done alongside your answer.
Useful Data: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{R}=82.06 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, 1 cal = 4.2 Joule
Q1. Briefly explain how to carry out each of the following processes:

$$
2 M \times 3=6 M
$$

(i) Reversible isothermal compression of a gas
(ii) Reversible constant pressure cooling of a gas
(iii) Reversible change of state of a gas from $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)$ to $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$

Q2. 1.00 mol of an ideal gas is the working substance of an engine. The engine operates in a cycle consisting of three steps: (Step 1) an adiabatic expansion from an initial volume of 10.0 L to a pressure of 1.00 atm and a volume of 20.0 L , (Step 2) a compression at constant pressure to its original volume of 10.0 L , and (Step 3) heating at constant volume to its original pressure. All the steps are reversible. (i) Show this cycle on a P-V diagram, (ii) For each step of the cycle, find the heat exchange, q (in Joule), and (iii) Find the efficiency of this cycle. Given that, $C_{p}=(7 / 2) \mathrm{R}$ and $C_{v}=(5 / 2)$ R. Assume C_{p} and C_{v} are independent of temperature.
$\mathbf{2 M}+\mathbf{6 M}+\mathbf{2 M}=\mathbf{1 0 M}$
Q3. Using $\Delta S=C_{v} \ln \left(T_{2} / T_{1}\right)+n R \ln \left(V_{2} / V_{l}\right)$ for the entropy change of an ideal gas, show explicitly that the entropy change is zero for a reversible adiabatic expansion from state $\left(\mathrm{V}_{1}, \mathrm{~T}_{1}\right)$ to state $\left(\mathrm{V}_{2}\right.$, T_{2}).

Q4. Suppose that a closed system consisting of two phases α and β is in thermal and mechanical equilibrium and is capable of $\mathrm{P}-\mathrm{V}$ work only has not yet reached phase equilibrium. If substance j flows spontaneously from α phase to β phase then show that $\mu_{j}{ }^{\alpha}>\mu_{j}{ }^{\beta}$.

Q5. Two moles of a van der Waals gas of volume 10 L at $25^{\circ} \mathrm{C}$ is changed to 20 L at $60^{\circ} \mathrm{C}$. Estimate ΔU (in Joule) for the process. Given that, $a=1.35 \times 10^{6} \mathrm{~cm}^{6}$ atm mol^{-2} and $C_{V, \mathrm{~m}}=30.5 \mathrm{~J}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$. Assume that $C_{V, m}$ remains constant in this temperature range.

Q6. Berthelot equation of state for real gases is $\left[P+\left(a / T V_{m}{ }^{2}\right)\right]\left(V_{m}-b\right)=R T$.
(i) Expand the Berthelot equation into the form of virial equation expressed as a power series in $1 / \mathrm{V}_{\mathrm{m}}$.
(ii) Give the Berthelot's prediction for the second (B) and third virial (C) coefficients. $\mathbf{1 M}+\mathbf{1 M}$
(iii) Starting with the virial equation expressed as a power series in P show that the Berthelot equation gives at T and P :

Q7. Two components A and B form an ideal solution at all compositions. When the values of $\Delta_{m i x} G / n(n=$ total number of moles of A and B$)$ at $25^{\circ} \mathrm{C}$ and 1 bar are plotted from $x_{B}=0$ to $x_{B}=$ 1 , a symmetric curve with a minimum at $x_{B}=0.5$ is obtained. The tangent of the curve at $x_{B}=0.5$ intersects the $x_{B}=0$ axis at $-0.414 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Estimate $\mu_{A}-\mu_{A}{ }^{*}$ and $\mu_{B}-\mu_{B}{ }^{*}$ at $X_{B}=0.5$. Compare these results with those calculated from the definition of ideal solution in terms of chemical potential of each component in the mixture at same conditions.
$\mathbf{3 M}+\mathbf{2 M}$

Q8. Benzene and toluene form ideal solutions at all compositions. The vapor pressures of pure benzene and pure toluene at $20^{\circ} \mathrm{C}$ are 74.7 Torr and 22.3 Torr, respectively. A certain solution of these two components has a vapor pressure of 50.6 Torr at $20^{\circ} \mathrm{C}$. Estimate the mole fractions of benzene and toluene in the liquid mixture and in the vapor phase.

4M+2M

END

