Birla Institute of Technology and Science Pilani -333031, Rajasthan
 $1^{\text {st }}$ semester 2017-2018, Mid-Semester Test (Closed Book)
 Course Title: Physical Chemistry I, Course No. CHEM F211
 Max Marks: 60, Time: 1 hr 30 mins, Date: 11.10.17

Answer all questions with proper units. Rough work can be done alongside your answer.
Useful Data: $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{R}=82.06 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{R}=1.987 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, latent heat of vaporization of water at normal boiling point $=539.4$ cal g^{-1}, Density of water at $100{ }^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}=0.958 \mathrm{~g} \mathrm{~cm}^{-3}$.
Important instruction to be followed: In case of derivation write all steps clearly one after another. Anything written alongside your answer will not be considered.
Q1. (i) Briefly explain with a schematic diagram of the system how to carry out a reversible adiabatic compression of a gas (answer with bullet points). (ii) What could be the effect of this process on the gas? Explain with the help of first of law thermodynamics.
$\mathbf{5 M}+1.5 \mathrm{M}$

Q2. Mention True or False for the following statements giving a brief reason for your answer (Marks will be awarded only if reason is given):
$\mathbf{1 M} \times \mathbf{3}=\mathbf{3 M}$
(i) A process in which the final temperature equals the initial temperature must be an isothermal process.
(ii) If a closed system at rest in the absence of external fields undergoes an adiabatic process that has $w=0$, then the systems temperature must remain constant.
(iii) If $\Delta S_{\text {sur }}=-\Delta S_{\text {sys }}$, the process is at equilibrium.

Q3. 50 gm of water vaporizes at $100^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate $q, w, \Delta U, \Delta H, \Delta S, \Delta G$ and ΔA for this process in calorie unit. Assume that water vapor behaves like an ideal gas.
$\mathbf{0 . 5 M}+\mathbf{3 M}+\mathbf{1 M}+\mathbf{0 . 5 M}+\mathbf{1 M}+\mathbf{1 M}+\mathbf{2 M}$

Q4. (i) An irreversible process is taking place in a one phase closed system which is in mechanical and thermal equilibrium and doing only $\mathrm{P}-\mathrm{V}$ work. Show that, $d U=T d S-P d V+\Sigma \mu_{i} d n_{i}$. $\mathbf{5 M}$ (ii) If a chemical reaction is taking place in a closed system which is in mechanical and thermal equilibrium doing only $\mathrm{P}-\mathrm{V}$ work and the reacting species are held at constant temperature and pressure, then starting with a suitable Gibbs equation show that the reaction Gibbs energy $=\Sigma v_{i} \mu_{\mathrm{i}}$.

Q5. (i) For the following isothermal process at temperature T:

Show that the total molar enthalpy change, $\Delta H_{m}=\int\left[T\left(\partial V_{m} / \partial T\right)_{P}-V_{m}\right] d P$ clearly deriving expressions for $\Delta H_{m}(\mathrm{a}), \Delta H_{m}(\mathrm{~b})$ and $\Delta H_{m}(\mathrm{c})$.
4.5M+2.5M+1M
(ii) Starting with a virial equation expressed as a power series in P, derive an expression for ΔH_{m} in terms of van der Waals constants a and b for the above mentioned isothermal process in part (i) neglecting the higher terms in the power series. Given that, $B=B^{+} R T$.

8M
(iii) Calculate ΔH_{m} (in $\mathrm{J} \mathrm{mol}^{-1}$) for the process in part (i) for $\mathrm{C}_{3} \mathrm{H}_{8}$ gas at 298 K and 1 bar assuming that $\mathrm{C}_{3} \mathrm{H}_{8}$ gas follows van der Waals equation of state. Given that, for $\mathrm{C}_{3} \mathrm{H}_{8}, T_{c}=369.8 \mathrm{~K}, P_{c}=$ $41.9 \mathrm{~atm} ; 1 \mathrm{bar}=0.987 \mathrm{~atm}$. (Note that at 1 bar pressure the higher terms in a virial equation of state can be neglected).

Q6. One mole of a gas obeys equation of state, $P V_{m}=R T\left(1+B^{+} P\right)$ undergoes a change of state from 200 atm and 373 K to 20 atm and 345 K .
(i) Calculate ΔS_{m} for this process assuming that B^{+}and $C_{\mathrm{p}, \mathrm{m}}$ remain constant in this temperature range with values of $-1.5 \times 10^{-3} \mathrm{~atm}^{-1}$ and $20.79 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively. $\mathbf{6 M}$
(ii) What would be the final temperature in a Joule-Thomson expansion from the same initial state to a state with a pressure of 50 atm of the same gas. Assume that Joule-Thomson coefficient remains constant in the temperature range 340 K to 380 K .

Q7. (i) At $25^{\circ} \mathrm{C}$, the density of an ethanol-water solution with 40% of ethanol by mass is 0.912 g cm^{-3}. What is the partial molar volume of the ethanol in the solution? Given that, the partial molar volume of water in the solution is $17.3 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$; molecular weights of water and ethanol are 18 and $46 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively.
(ii) Show that $S_{i}=-\left(\partial \mu_{i} / \partial T\right)_{P, n_{j}}$

END

