Birla Institute of Technology and Science Pilani –333031, Rajasthan 1st semester 2017-2018, Mid-Semester Test (Closed Book) Course Title: Physical Chemistry I, Course No. CHEM F211 Max Marks: 60, Time: 1hr 30 mins, Date: 11.10.17

Answer all questions with proper units. Rough work can be done alongside your answer.

Useful Data: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, $R = 82.06 \text{ cm}^3 \text{ atm mol}^{-1} \text{ K}^{-1}$, $R = 1.987 \text{ cal mol}^{-1} \text{ K}^{-1}$, latent heat of vaporization of water at normal boiling point = 539.4 cal g⁻¹, Density of water at 100 °C and 1 atm = 0.958 g cm⁻³.

Important instruction to be followed: In case of derivation write all steps clearly one after another. Anything written alongside your answer will not be considered.

Q1. (i) Briefly explain with a schematic diagram of the system how to carry out a reversible adiabatic compression of a gas (answer with bullet points). (ii) What could be the effect of this process on the gas? Explain with the help of first of law thermodynamics. 5M+1.5M

Q2. Mention True or False for the following statements giving a brief reason for your answer (Marks will be awarded only if reason is given): $1M \times 3=3M$

(i) A process in which the final temperature equals the initial temperature must be an isothermal process.

(ii) If a closed system at rest in the absence of external fields undergoes an adiabatic process that has w = 0, then the systems temperature must remain constant.

(iii) If $\Delta S_{sur} = -\Delta S_{sys}$, the process is at equilibrium.

Q3. 50 gm of water vaporizes at 100 °C and 1 atm pressure. Calculate q, w, ΔU , ΔH , ΔS , ΔG and ΔA for this process in calorie unit. Assume that water vapor behaves like an ideal gas.

0.5M+3M+1M+0.5M+1M+1M+2M

Q4. (i) An irreversible process is taking place in a one phase closed system which is in mechanical and thermal equilibrium and doing only P-V work. Show that, $dU = TdS - PdV + \Sigma \mu_i dn_i$. 5M (ii) If a chemical reaction is taking place in a closed system which is in mechanical and thermal equilibrium doing only P-V work and the reacting species are held at constant temperature and pressure, then starting with a suitable Gibbs equation show that the reaction Gibbs energy = $\Sigma v_i \mu_i$. 2M

Q5. (i) For the following isothermal process at temperature T:

Real gas at P $\xrightarrow{a}_{\Delta H_m(a)}$ Real gas at 0 bar $\xrightarrow{b}_{\Delta H_m(b)}$ Ideal gas at 0 bar $\xrightarrow{c}_{\Delta H_m(c)}$ Ideal gas at P

Show that the total molar enthalpy change, $\Delta H_m = \int [T(\partial V_m/\partial T)_P - V_m]dP$ clearly deriving expressions for $\Delta H_m(a)$, $\Delta H_m(b)$ and $\Delta H_m(c)$. 4.5M+2.5M+1M (ii) Starting with a virial equation expressed as a power series in *P*, derive an expression for ΔH_m in terms of van der Waals constants *a* and *b* for the above mentioned isothermal process in part (i) neglecting the higher terms in the power series. Given that, $B = B^+RT$. (iii) Calculate ΔH_m (in J mol⁻¹) for the process in part (i) for C₃H₈ gas at 298 K and 1 bar assuming that C₃H₈ gas follows van der Waals equation of state. Given that, for C₃H₈, $T_c = 369.8$ K, $P_c = 41.9$ atm; 1 bar = 0.987 atm. (Note that at 1 bar pressure the higher terms in a virial equation of state can be neglected).

Q6. One mole of a gas obeys equation of state, $PV_m = RT (1 + B^+P)$ undergoes a change of state from 200 atm and 373 K to 20 atm and 345 K.

(i) Calculate ΔS_m for this process assuming that B^+ and $C_{p,m}$ remain constant in this temperature range with values of -1.5×10^{-3} atm⁻¹ and 20.79 J K⁻¹mol⁻¹, respectively. 6M (ii) What would be the final temperature in a Joule-Thomson expansion from the same initial state to a state with a pressure of 50 atm of the same gas. Assume that Joule-Thomson coefficient remains constant in the temperature range 340 K to 380 K. 2M

Q7. (i) At 25 °C, the density of an ethanol-water solution with 40% of ethanol by mass is 0.912 g cm⁻³. What is the partial molar volume of the ethanol in the solution? Given that, the partial molar volume of water in the solution is 17.3 cm³ mol⁻¹; molecular weights of water and ethanol are 18 and 46 g mol⁻¹, respectively. **4M**

(ii) Show that $S_i = -(\partial \mu_i / \partial T)_{P, n_i}$

END

3M