BITS PILANI- K.K. BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020 PHYSICAL CHEMISTRY I (CHEM F211) MARKS : 100

COMPREHENSIVE EXAM (CLOSED BOOK) DURATION: 3 HOURS (FN) DATE : 09/12/2019

Write answers of Q.1 and Q.2 in first two pages of answer sheet. All parts of the question should be answered together. Start a new question from a fresh page. Make an index. Report all answers in Boxes. Useful data: R = 8.314 JK⁻¹mol⁻¹=1.987 Cal/mol-K= 82.06 cm³atm/mol-K=0.08206 dm³ atm/mol-K, Atomic masses of H, O, C, N, Ar = 1.0, 16.0, 12.0, 14, 39.95 g mol⁻¹respectively, 1 bar = 0.9869 atm= 750 torr , Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$; F = 96485 C/mol **Choose the correct alternative:** $\begin{bmatrix} 2 \times 5 = 10 \end{bmatrix}$ 0.1 What is the $(v_{\pm})^{v}$ of 0.001m BaCl₂ aqueous solution ? (i) **[a]** 0.004 **[b]** 1.59 [c] 4 [**d**] 0.002 (ii) The combustion of solid glucose in an adiabatic bomb calorimeter give -2801 kJ/mol as the $\Delta_c U_{298}^{\circ}$. What will be the $\Delta_c H_{298}^{\circ}$ of glucose (in kJ/mol)? **[a]** -2808.5 **[b]** -2801 [c] -2796 [d] -2803.5 (iii) Given the standard Gibbs energy for a chemical reaction as $\Delta G^{\circ} = 12RT$, the standard equilibrium constant (K_p^{o}) for the reaction is close to [c] 6×10^{12} [d] 6×10^{6} [a] 6×10^{-12} **[b]** 6×10^{-6} (iv) When Clapeyron equation is used to study the effect of pressure on the solid to liquid transition of water, the ΔT is obtained as -7.5 K cm³ atm J⁻¹. The ΔT in K is approximately equal to [b] 7.5 [d] -0.76 **[a]** -7.5 [c] 0.76 For N₂ (g), the Van der Waal's constant $a = 1.35 \times 10^6$ cm⁶ atm mol⁻² and b = 38.6 cm³ mol⁻¹. The **(v)** critical temperature of N_2 (g) is close to [a] 126 K [c] 252 K [b] 77 K [d] 151 K **Q.2 STATE TRUE OR FALSE (Give justifications for your answers)** $[2 \times 3 = 6]$ For the acid dissociation constant (K_a) in aqueous solution of a weak acid HA of the order of 1×10^{-7} (i) mol^2/kg^2 , the molality of H₃O⁺ is approximately equal to 0.000316mol/kg. The osmotic pressure at 25°C and 1 atm of a 0.0250mol/dm³ solution of glucose ($C_6H_{12}O_6$) in water **(ii)** is close to 0.61 atm. (iii) The work done by a closed system can exceed the decrease in the system's internal energy. Q.3(a) For the Daniel cell at 25 °C and 1 bar: $Cu'|Zn|ZnSO_4(m_1)||CuSO_4(m_2)||Cu$, with $m_1=0.00200 \text{ mol/kg}$ and $m_2=0.00100 \text{ mol/kg}$, ξ° values for the right and left half cells are 0.339 and -0.762 V respectively. (i) Calculate the ionic strength (I_m/m_0) of ZnSO₄ and CuSO₄ solutions. Estimate ξ at 25 °C of this cell using the Davies equation to estimate the activity (ii) coefficients and assuming that the salt bridge makes ξ_I negligible. When the cell is connected to a load, into which terminal (left or right) do electrons flow (iii) from load. [4+8+2=14]**Q.3(b)** An ideal solution of liquids B and C with $x_B^l = 0.400$ at 25°C has a vapour pressures of 139 torr and a vapour composition of $x_B^{\nu} = 0.650$. Find the vapour pressure of pure B and the partial pressure of C at 25°C. Assume ideal solution. [4]

- Q.4 (a) For the acetone chloroform solution at 35.2°C, the vapour pressures P and acetone vapourphase mole fractions, \mathbf{x}^{v}_{ac} , are given as functions of the liquid – phase acetone mole fraction, \mathbf{x}^{l}_{ac} .
 - (i) Find the Convention I activity coefficients with $x_{ac}^1 = 0.3365$.
 - (ii) Find Δ_{mix} G of the solution containing 0.3365 mole of acetone and 0.6635 mole of chloroform at 35.2°C and 1 bar. Given

x ¹ ac	x ^v _{ac}	P/torr
).0000	0.0000	293
).3365	0.3171	249
1.0000	1.0000	344.5

[4+3]

Q.4 (b) A certain perfect gas has $C_{V,m} = a + bT$, where a = 25.0 J/(mol K) and b = 0.0300 J/(mol K) K^2). Let 4.00 mol of the gas go from 300 K and 2.00 atm to 500 K and 3.00 atm . Calculate ΔU , ΔH and ΔS for this change of state

1000 , $\Delta 11010$ $\Delta 5$ 101 t	ms change of state.	
$\Delta U (kJ)$	$\Delta H(kJ)$	$\Delta S (J/K)$

[3+2+4]

Q.5(a) The ideal gas reaction $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ at 600 K has $\Delta H^0 = 217.9$ kJ/mol, and $\Delta G^{\circ} = 72.4$ kJ/mol. Calculate the temperature at which K_{p}° is 30 for this reaction. Assume ΔH° is constant in the temperature range of interest. [5]

Q.5(b) A certain ideal gas mixture is held at constant volume at 410° C and has the following initial partial pressures for $Cl_2(g)$ as 352 torr, CO(g) as 345 torr, for $COCl_2(g)$ as 0 torr. At equilibrium, total pressure is 450 torr. Find partial pressure (in torr) of COCl₂ at equilibrium and calculate $K_{P^{o}}$ at 410°C for the reaction CO(g) + Cl₂(g) \rightleftharpoons COCl₂ (g). (P^o = 750torr). [5]

Q.6(a) State Trouton-Hildebrand-Everette (THE) rule and what is the molar entropy of vaporization $(\Delta_{vap}S_{m,nbp})$ of a liquid that boils at 380 K at 1 atm in terms of R? Estimate using THE, enthalpy of vaporization ($\Delta_{vap}H_m$ in kJ/mol) of pure Zn, given the normal boiling point of Zn is 911°C. (Assume reversibility during vaporization). [5]

Q.6(b) The molar enthalpy of vaporization of $Br_2(1)$ is 30.7 kJ/mol at its normal boiling point of 58.8°C. Using differential form of Clapeyron equation, calculate the differential $\left(\frac{dT}{dP}\right)$ in K/Pa. (Assume ideal gas for vapor phase). [5]

Q.7(a) Estimate the virial coefficient B (in $m^3 mol^{-1}$) of 17 g of NH₃ in 1000 cm³ at 35 bar pressure and at 450 K. (Consider the virial equation involving virial coefficient up to B only). [5]

Q.7(b) Using reduced van der Waals equation, calculate the pressure (in atm) of 40 g of $C_3H_8(g)$ in a container of volume 500 cm³ at 50°C. (Critical constants of $C_3H_8(g)$: $T_c = 369.8$ K, $P_c = 41.9$ atm, $V_{m,c} = 58$ cm³/mol). [5]

- 8 (a) For 15 g of $CH_4(g)$ at 25°C and 1 atm, calculate the number of molecules whose speed lies in the range 200.000 m/s to 200.002 m/s.[Assume perfect gas behavior for CH₄(g)].
- **8(b)** For $N_2(g)$ at 400 K and 1.5 atm, estimate the average speed (in m s⁻¹) and number of molecular collisions (in cm⁻²s⁻¹) with a container wall of area 1.00 cm² that occur in 1s [Assume perfect gas behavior for $N_2(g)$]. [5]
- **9(a)** The solubility product for AgBr in water is $7.7 \times 10^{-13} \text{ mol}^2/\text{kg}^2$ at 25°C. Find the solubility of AgBr (in mol/kg) in (i) pure water, and (ii) 0.050 mol/kg of KNO₃ added aqueous solution. [5]
- **9(b)** The normal freezing point of D₂O (where D \equiv ²H) is 3.82°C and $\Delta_{fus}H_m$ is 6305 J/mol. (i) Calculate the cryoscopic constant (K_f) of D_2O_i (ii) Find the freezing point of a solution of 1 g of CH₃COCH₃ in 60 g of D₂O. [5]