B I T S PILANI- K.K. BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020
PHYSICAL CHEMISTRY I (CHEM F211)
MARKS : 100
Write answers of $\mathbf{Q .} 1$ and $\mathbf{Q .} 2$ in first two pages of answer sheet. All parts of the question should be answered together. Start a new question from a fresh page. Make an index. Report all answers in Boxes.
Useful data: $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=1.987 \mathrm{Cal} / \mathrm{mol}-\mathrm{K}=82.06 \mathrm{~cm}^{3} \mathrm{~atm} / \mathrm{mol}-\mathrm{K}=0.08206 \mathrm{dm}^{3}$ $\mathrm{atm} / \mathrm{mol}-\mathrm{K}$, Atomic masses of $\mathrm{H}, \mathrm{O}, \mathrm{C}, \mathrm{N}, \mathrm{Ar}=1.0,16.0,12.0,14,39.95 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively, $1 \mathrm{bar}=0.9869 \mathrm{~atm}=750$ torr , Avogadro constant $=6.022 \times 10^{23} \mathrm{~mol}^{-1} ; \mathrm{F}=96485 \mathrm{C} / \mathrm{mol}$
Q. 1 Choose the correct alternative:

COMPREHENSIVE EXAM (CLOSED BOOK) DURATION: 3 HOURS (FN)
DATE : 09/12/2019
(i) What is the $\left(v_{ \pm}\right)^{v}$ of $0.001 \mathrm{~m} \mathrm{BaCl}_{2}$ aqueous solution?
[a] 0.004
[b] 1.59
[c] 4
[d] 0.002
(ii) The combustion of solid glucose in an adiabatic bomb calorimeter give $-2801 \mathrm{~kJ} / \mathrm{mol}$ as the $\Delta_{c} U^{\circ}{ }_{298}$. What will be the $\Delta_{c} H^{\circ}{ }_{298}$ of glucose (in $\mathrm{kJ} / \mathrm{mol}$)?
[a]-2808.5
[b] -2801
[c] -2796
[d] -2803.5
(iii) Given the standard Gibbs energy for a chemical reaction as $\Delta G^{\circ}=12 R T$, the standard equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}{ }^{\circ}\right)$ for the reaction is close to
[a] 6×10^{-12}
[b] 6×10^{-6}
$[c] 6 \times 10^{12}$
[d] 6×10^{6}
(iv) When Clapeyron equation is used to study the effect of pressure on the solid to liquid transition of water, the $\Delta \mathrm{T}$ is obtained as $-7.5 \mathrm{~K} \mathrm{~cm}^{3} \operatorname{atm~} \mathrm{~J}^{-1}$. The $\Delta \mathrm{T}$ in K is approximately equal to
[a] -7.5
[b] 7.5
[c] 0.76
[d] -0.76
(v) For N_{2} (g), the Van der Waal's constant $a=1.35 \times 10^{6} \mathrm{~cm}^{6}$ atm mol^{-2} and $b=38.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. The critical temperature of $\mathrm{N}_{2}(\mathrm{~g})$ is close to
[a] 126 K
[b] 77 K
[c] 252 K
[d] 151 K
Q. 2 STATE TRUE OR FALSE (Give justifications for your answers) [2 x $3=6$]
(i) For the acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ in aqueous solution of a weak acid HA of the order of 1×10^{-7} $\mathrm{mol}^{2} / \mathrm{kg}^{2}$, the molality of $\mathrm{H}_{3} \mathrm{O}^{+}$is approximately equal to $0.000316 \mathrm{~mol} / \mathrm{kg}$.
(ii) The osmotic pressure at $25^{\circ} \mathrm{C}$ and 1 atm of a $0.0250 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in water is close to 0.61 atm .
(iii) The work done by a closed system can exceed the decrease in the system's internal energy.
Q.3(a) For the Daniel cell at $25^{\circ} \mathrm{C}$ and 1 bar: $\quad \mathbf{C u}^{\prime}|\mathbf{Z n}| \mathbf{Z n S O}_{4}\left(\mathbf{m}_{1}\right)| | \mathbf{C u S O}_{4}\left(\mathbf{m}_{2}\right) \mid \mathbf{C u}$, with $\mathrm{m}_{1}=0.00200 \mathrm{~mol} / \mathrm{kg}$ and $\mathrm{m}_{2}=0.00100 \mathrm{~mol} / \mathrm{kg}, \xi^{\circ}$ values for the right and left half cells are 0.339 and -0.762 V respectively.
(i) Calculate the ionic strength $\left(I_{m} / m_{0}\right)$ of ZnSO_{4} and CuSO_{4} solutions.
(ii) Estimate ξ at $25^{\circ} \mathrm{C}$ of this cell using the Davies equation to estimate the activity coefficients and assuming that the salt bridge makes ξ_{J} negligible.
(iii) When the cell is connected to a load, into which terminal (left or right) do electrons flow from load.
$[4+8+2=14]$
Q.3(b) An ideal solution of liquids B and C with $x_{B}{ }^{l}=0.400$ at $25^{\circ} \mathrm{C}$ has a vapour pressures of 139 torr and a vapour composition of $x_{B}{ }^{v}=0.650$. Find the vapour pressure of pure B and the partial pressure of C at $25^{\circ} \mathrm{C}$. Assume ideal solution.
Q. 4 (a) For the acetone - chloroform solution at $35.2^{\circ} \mathrm{C}$, the vapour pressures P and acetone vapourphase mole fractions, $\mathbf{x}_{\mathrm{ac}}{ }^{\text {a }}$, are given as functions of the liquid - phase acetone mole fraction, $\mathbf{x}_{\mathrm{ac}}^{1}$.
(i) Find the Convention I activity coefficients with $\mathrm{x}^{1}{ }_{\mathrm{ac}}=0.3365$.
(ii) Find $\Delta_{\text {mix }}$ G of the solution containing 0.3365 mole of acetone and 0.6635 mole of chloroform at $35.2^{\circ} \mathrm{C}$ and 1 bar. Given

$\mathbf{x}^{1}{ }_{\text {ac }}$	$\mathbf{x}_{\text {ac }}^{\mathrm{y}}$	P/torr
$\mathbf{0 . 0 0 0 0}$	$\mathbf{0 . 0 0 0 0}$	293
$\mathbf{0 . 3 3 6 5}$	$\mathbf{0 . 3 1 7 1}$	$\mathbf{2 4 9}$
$\mathbf{1 . 0 0 0 0}$	$\mathbf{1 . 0 0 0 0}$	$\mathbf{3 4 4 . 5}$

[4+3]
Q. 4 (b) A certain perfect gas has $C_{V, m}=a+b T$, where $\mathrm{a}=25.0 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$ and $\mathrm{b}=0.0300 \mathrm{~J} /(\mathrm{mol}$ K^{2}). Let 4.00 mol of the gas go from 300 K and 2.00 atm to 500 K and 3.00 atm . Calculate $\Delta \mathrm{U}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for this change of state.
[3+2+4]

$\Delta \mathrm{U}(\mathrm{kJ})$	$\Delta \mathrm{H}(\mathrm{kJ})$	$\Delta \mathrm{S}(\mathrm{J} / \mathrm{K})$

Q.5(a) The ideal gas reaction $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$ at 600 K has $\Delta H^{\mathrm{o}}=217.9$ $\mathrm{kJ} / \mathrm{mol}$, and $\Delta G^{0}=72.4 \mathrm{~kJ} / \mathrm{mol}$. Calculate the temperature at which $\mathrm{K}_{\mathrm{p}}{ }^{\circ}$ is 30 for this reaction. Assume ΔH° is constant in the temperature range of interest.
Q.5(b) A certain ideal gas mixture is held at constant volume at $410^{\circ} \mathrm{C}$ and has the following initial partial pressures for $\mathrm{Cl}_{2}(\mathrm{~g})$ as 352 torr, $\mathrm{CO}(\mathrm{g})$ as 345 torr, for $\mathrm{COCl}_{2}(\mathrm{~g})$ as 0 torr. At equilibrium, total pressure is 450 torr. Find partial pressure (in torr) of COCl_{2} at equilibrium and calculate $\mathrm{K}_{\mathrm{P}}{ }^{\mathrm{o}}$ at $410^{\circ} \mathrm{C}$ for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) .\left(\mathrm{P}^{\mathrm{o}}=750\right.$ torr $)$. [5]
Q.6(a) State Trouton-Hildebrand-Everette (THE) rule and what is the molar entropy of vaporization ($\Delta_{\text {vap }} S_{\mathrm{m}, \text { nbp }}$) of a liquid that boils at 380 K at 1 atm in terms of R? Estimate using THE, enthalpy of vaporization ($\Delta_{\text {vap }} H_{\mathrm{m}}$ in $\mathrm{kJ} / \mathrm{mol}$) of pure Zn , given the normal boiling point of Zn is $911^{\circ} \mathrm{C}$. (Assume reversibility during vaporization).
Q.6(b) The molar enthalpy of vaporization of $\mathrm{Br}_{2}(\mathrm{l})$ is $30.7 \mathrm{~kJ} / \mathrm{mol}$ at its normal boiling point of $58.8^{\circ} \mathrm{C}$. Using differential form of Clapeyron equation, calculate the differential $\left(\frac{d T}{d P}\right)$ in K / Pa. (Assume ideal gas for vapor phase).
Q.7(a) Estimate the virial coefficient B (in m ${ }^{3} \mathrm{~mol}^{-1}$) of 17 g of NH_{3} in $1000 \mathrm{~cm}^{3}$ at 35 bar pressure and at 450 K . (Consider the virial equation involving virial coefficient up to B only).
Q.7(b) Using reduced van der Waals equation, calculate the pressure (in atm) of $40 \mathrm{~g}^{\text {of } \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \text { in a }}$ container of volume $500 \mathrm{~cm}^{3}$ at $50^{\circ} \mathrm{C}$.
(Critical constants of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}): T_{c}=369.8 \mathrm{~K}, P_{c}=41.9 \mathrm{~atm}, V_{m, c}=58 \mathrm{~cm}^{3} / \mathrm{mol}$).
8 (a) For 15 g of $\mathrm{CH}_{4}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 1 atm , calculate the number of molecules whose speed lies in the range $200.000 \mathrm{~m} / \mathrm{s}$ to $200.002 \mathrm{~m} / \mathrm{s}$. [Assume perfect gas behavior for $\mathrm{CH}_{4}(\mathrm{~g})$].
8(b) For $\mathrm{N}_{2}(\mathrm{~g})$ at 400 K and 1.5 atm , estimate the average speed (in $\mathrm{m} \mathrm{s}^{-1}$) and number of molecular collisions (in $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$) with a container wall of area $1.00 \mathrm{~cm}^{2}$ that occur in 1s [Assume perfect gas behavior for $\left.\mathrm{N}_{2}(\mathrm{~g})\right]$.

9(a) The solubility product for AgBr in water is $7.7 \times 10^{-13} \mathrm{~mol}^{2} / \mathrm{kg}^{2}$ at $25^{\circ} \mathrm{C}$. Find the solubility of AgBr (in mol$/ \mathrm{kg}$) in (i) pure water, and (ii) $0.050 \mathrm{~mol} / \mathrm{kg}$ of KNO_{3} added aqueous solution.
9 (b) The normal freezing point of $\mathrm{D}_{2} \mathrm{O}$ (where $\mathrm{D} \equiv^{2} \mathrm{H}$) is $3.82^{\circ} \mathrm{C}$ and $\Delta_{\text {fus }} H_{m}$ is $6305 \mathrm{~J} / \mathrm{mol}$.
(i) Calculate the cryoscopic constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ of $\mathrm{D}_{2} \mathrm{O}$.(ii) Find the freezing point of a solution of 1 g of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ in 60 g of $\mathrm{D}_{2} \mathrm{O}$.

