BITS-PILANI, K. K. Birla Goa Campus Physical Chemistry I (CHEM F211), Semester I 2022-23

Comprehensive Examination: 26/12/22, FN (Closed Book), Maximum Marks: 80

Duration: 3 hrs Instructions: Answer all parts and steps of a question together and write the final answers in the main

answer sheet in boxes as per format given wherever applicable. Use only pen for answering.

Useful Data: R = 82.06 cm³atmmol⁻¹ = 8.314 JK⁻¹mol⁻¹, P^o = 1 bar = 750 torr, 1 atm = 760 torr = 1.01325 × 10^5 Pa, Avogadro Number = 6.023×10^{23} , Atomic Mass (g/mol): Ar-40, C-12, H-1, 0° C = 273.15 K,

1F = 96485 C/mol

- For the cell at 25 °C and 1 bar : $Pt|Ag|AgCl(s) | HCl(aq) | Hg_2Cl_2(s) | Hg | Pt'$, **Q.1** ξ° values for the left and right half cells are 0.2222 and 0.2680 V respectively.
- Find the **emf** if the HCl molality is 0.100 mol/kg. (a)
- For this cell, $(\partial \xi/\partial T)_P = 0.338 \text{ mV/K}$ at 25 °C and 1 bar. Find ΔH° , ΔG° (both in kJ/mol) and ΔS° (b) (kJ/mol.K) for the cell reaction at 25 °C. [3+6=9]

ξ (V)	ΔH° (kJ/mol)	ΔS° (kJ/mol.K)	ΔG° (kJ/mol)

- Q.2 For a 0.02 mol/kg MgCl₂(aq) solution at 25 °C.
- Calculate (\mathbf{v}_{\pm}) . (a)
- Calculate the ionic strength I_m of the solution. (b)
- (c) Use Davies equation to calculate γ_{\pm} for the solution.

[2+2+3=7]

[2+2+4+2+2=12]

v_{\pm}	I_m	γ_{\pm}

Q.3 For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ in the range from 298 K to 900 K, the standard equilibrium constant (K_P^0) is expressed as a function of temperature (*T* in Kelvin (K)) as:

$$K_P^o = a \times (T/K)^b \times e^{-(\frac{c}{T/K})}$$

- $a = 1.09 \times 10^{13}, b = -1.304, c = 7307$. Answer the following questions:
- (a) Calculate K_P^0 at 400 K and 800 K.
- (b) Find ΔH^{0} (in J/mol), assuming enthalpy is constant.
- (c) Find ΔG° (in J/mol) and ΔS° (J/mol.K) at 400 K.

K_P^0 (400K)	K ^o _P (800K)	ΔH^{0} (J/mol)	ΔG° (J/mol)@400K	ΔS° (J/mol.K) @400K

Q.4 The normal melting point of NaCl is 801°C. Given the specific enthalpy of fusion of NaCl as 492.6 J/g, the density of the solid NaCl as 2.165 g/cm³ and the density of liquid NaCl as 1.733 g/cm^3 .

(a) Calculate the change in volume (ΔV in cm³) and increase in pressure (ΔP in atm) that is needed to raise the normal melting point of 5g of NaCl by 2°C?

(b) Find P_2 (in atm) if P_1 corresponds to pressure at normal fusion transition and the entropy of fusion (Δ_{fus} S in J/K) at the normal fusion temperature. [4 + 4 = 8] **Q.5** The vapor pressure of benzene for the liquid-vapor region is given as a function of *T*:

$$ln(P/torr) = -\frac{4110}{T/K} + 18.33$$

Answer the following using the above equation:

- (a) Find the normal boiling point $(T_{nbp} \text{ in } \mathbf{K})$.
- (b) Find the equilibrium vapor pressure (P in torr) when benzene boils at 40°C.
- (c) Calculate the molar enthalpy of vaporization ($\Delta_{vap}H_m$ in J/mol) of liquid benzene and the molar entropy ($\Delta_{vap}S_m$ in J/mol.K) during vaporization at its normal boiling point. Assume constant enthalpy of vaporization. [2 + 2 + 4 = 8]

$T_{nbp}(K)$	P (torr) @ 40°C	$\Delta_{vap}H_m$ (J/mol)	$\Delta_{vap}S_m$ (J/mol.K)

Q.6 For ethane, critical constants are $P_C = 48.2$ atm, $T_C = 305.4$ K. Calculate the pressure (*P* in **atm**) exerted by 50 g of C₂H₆ in a 500 cm³ vessel at 50^oC using the following equations of state:

(a) Ideal gas equation (b) Van der Waal's equation and (c) Virial equation given that virial coefficients for ethane $B = -157 \text{ cm}^3/\text{mol}$, $C = 9650 \text{ cm}^6/\text{mol}^2$ at 50° C. [3 + 7 + 5 = 15]

Q.7 For 88 g of a hypothetical hydrocarbon gas A of molar mass 44 g/mol occupying a volume of 160 cm³ at a temperature of 320 K, calculate the pressure (P in **atm**) using:

(a) the Redlich-Kwong (R-K) state equation. [Useful information: Use Redlich-Kwong (R-K) constants of A as: $a = 1.074 \times 10^8$ cm⁶atmK^{1/2}mol⁻², b = 50 cm³/mol].

(b) the given compressibility factor Z = 0.8. [5 + 3 = 8]

Q.8 Argon (Ar) considered as perfect gas, answer the following:

(a) For 15 g of Ar in a container, find the number of molecules of gas (dN_v) within the speed interval 200 m/s to 200.001 m/s at 340 K and 1 atm. (Molar mass of Ar = 40 g/mol). [5]

(b) Calculate the temperature (T in K) at which the molecular speed distribution function (G(v)) of Ar gas at 200 m/s and 800 m/s are equal considering the same infinitesimal thicknesses of 0.001 m/s. [4]

(c) Calculate the mean free path (λ in **m**) of Ar, given the collision diameter (*d*) as 5×10^{-10} m (5Å), at 340 K and 1 atm. [4]