BITS-PILANI, K. K. Birla Goa Campus
Physical Chemistry I (CHEM F211), Semester I 2022-23
Comprehensive Examination: 26/12/22, FN (Closed Book), Maximum Marks: 80
Duration: 3 hrs
Instructions: Answer all parts and steps of a question together and write the final answers in the main answer sheet in boxes as per format given wherever applicable. Use only pen for answering.
Useful Data: $\mathrm{R}=82.06 \mathrm{~cm}^{3} \mathrm{atmmol}^{-1} \equiv 8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{P}^{0}=1$ bar $=750$ torr, $1 \mathrm{~atm}=760$ torr $=1.01325 \times$ $10^{5} \mathrm{~Pa}$, Avogadro Number $=6.023 \times 10^{23}$, Atomic Mass ($\mathrm{g} / \mathrm{mol}$): Ar-40, C-12, $\mathrm{H}-1,0^{\circ} \mathrm{C} \equiv 273.15 \mathrm{~K}$, $1 \mathrm{~F}=96485 \mathrm{C} / \mathrm{mol}$
Q. $1 \quad$ For the cell at $25^{\circ} \mathrm{C}$ and 1 bar: $\mathbf{P t}|\mathbf{A g}| \mathbf{A g C l}(\mathbf{s})\left|\mathbf{H C l}(\mathbf{a q}) \| \mathbf{H g}_{2} \mathbf{C l}_{2}(\mathbf{s})\right| \mathbf{H g} \mid \mathbf{P t}{ }^{\prime}$, ξ° values for the left and right half cells are 0.2222 and 0.2680 V respectively.
(a) Find the emf if the HCl molality is $0.100 \mathrm{~mol} / \mathrm{kg}$.
(b) For this cell, $(\partial \xi / \partial \mathrm{T})_{\mathrm{P}}=0.338 \mathrm{mV} / \mathrm{K}$ at $25^{\circ} \mathrm{C}$ and 1 bar. Find $\mathbf{\Delta} \mathbf{H}^{\mathbf{0}}, \boldsymbol{\Delta} \mathbf{G}^{\mathbf{0}}$ (both in $\mathbf{k J} / \mathbf{m o l}$) and $\boldsymbol{\Delta} \mathbf{S}^{\mathbf{0}}$ $(\mathbf{k J} / \mathrm{mol} . \mathrm{K})$ for the cell reaction at $25^{\circ} \mathrm{C}$. $[3+6=9]$

$\xi(V)$	$\Delta \mathbf{H}^{\circ}(\mathbf{k J} / \mathbf{m o l})$	$\Delta \mathbf{S}^{\circ}(\mathbf{k J} / \mathrm{mol} . \mathrm{K})$	$\Delta \mathbf{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$

Q. 2 For a $0.02 \mathrm{~mol} / \mathrm{kg} \mathrm{MgCl} 2(\mathrm{aq})$ solution at $25^{\circ} \mathrm{C}$.
(a) Calculate $\left(v_{ \pm}\right)$.
(b) Calculate the ionic strength $\boldsymbol{I}_{\boldsymbol{m}}$ of the solution.
(c) Use Davies equation to calculate $\boldsymbol{\gamma}_{ \pm}$for the solution. [2+2+3=7]

$\mathbf{v}_{ \pm}$	$\boldsymbol{I}_{\boldsymbol{m}}$	$\boldsymbol{\gamma}_{ \pm}$

Q. 3 For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ in the range from 298 K to 900 K , the standard equilibrium constant (K_{P}^{o}) is expressed as a function of temperature (T in $\operatorname{Kelvin}(\mathrm{K})$) as:

$$
K_{P}^{o}=a \times(T / K)^{b} \times e^{-\left(\frac{c}{T / K}\right)}
$$

$a=1.09 \times 10^{13}, b=-1.304, c=7307$. Answer the following questions: .
(a) Calculate $\boldsymbol{K}_{\boldsymbol{P}}^{\boldsymbol{o}}$ at $\mathbf{4 0 0} \mathrm{K}$ and 800 K .
(b) Find $\Delta \boldsymbol{H}^{\mathbf{0}}$ (in $\left.\mathbf{J} / \mathrm{mol}\right)$, assuming enthalpy is constant.
(c) Find $\Delta \boldsymbol{G}^{\mathbf{0}}(\mathbf{i n} \mathbf{J} / \mathbf{m o l})$ and $\Delta \mathbf{S}^{\mathbf{0}}(\mathbf{J} / \mathbf{m o l} . \mathrm{K})$ at $\mathbf{4 0 0} \mathbf{K}$.
$[2+2+4+2+2=12]$

$K_{P}^{\boldsymbol{o}}(400 \mathrm{~K})$	$K_{P}^{o}(800 \mathrm{~K})$	$\Delta H^{0}(\mathrm{~J} / \mathrm{mol})$	$\Delta G^{\mathbf{o}}(\mathrm{J} / \mathrm{mol}) @ 400 \mathrm{~K}$	$\Delta S^{\mathbf{o}}(\mathrm{J} / \mathrm{mol} . \mathrm{K}) @ 400 \mathrm{~K}$

Q. 4 The normal melting point of NaCl is $801^{\circ} \mathrm{C}$. Given the specific enthalpy of fusion of NaCl as $492.6 \mathrm{~J} / \mathrm{g}$, the density of the solid NaCl as $2.165 \mathrm{~g} / \mathrm{cm}^{3}$ and the density of liquid NaCl as 1.733 $\mathrm{g} / \mathrm{cm}^{3}$.
(a) Calculate the change in volume ($\Delta \boldsymbol{V}$ in $\mathbf{c m}^{\mathbf{3}}$) and increase in pressure ($\boldsymbol{\Delta P}$ in $\mathbf{a t m}$) that is needed to raise the normal melting point of 5 g of NaCl by $2^{\circ} \mathrm{C}$?
(b) Find \boldsymbol{P}_{2} (in $\mathbf{a t m}$) if \boldsymbol{P}_{1} corresponds to pressure at normal fusion transition and the entropy of fusion ($\Delta_{\mathrm{fus}} \mathbf{S}$ in \mathbf{J} / \mathbf{K}) at the normal fusion temperature.
Q. 5 The vapor pressure of benzene for the liquid-vapor region is given as a function of T :

$$
\ln (P / \text { torr })=-\frac{4110}{T / K}+18.33
$$

Answer the following using the above equation:
(a) Find the normal boiling point ($\boldsymbol{T}_{n b p}$ in \mathbf{K}).
(b) Find the equilibrium vapor pressure (\boldsymbol{P} in torr) when benzene boils at $40^{\circ} \mathrm{C}$.
(c) Calculate the molar enthalpy of vaporization ($\boldsymbol{\Delta}_{\text {vap }} \boldsymbol{H}_{\boldsymbol{m}}$ in $\mathrm{J} / \mathrm{mol}$) of liquid benzene and the molar entropy ($\boldsymbol{\Delta}_{\text {vap }} \boldsymbol{S}_{\boldsymbol{m}}$ in $\mathbf{J} / \mathbf{m o l} . \mathbf{K}$) during vaporization at its normal boiling point. Assume constant enthalpy of vaporization.
$[2+2+4=8]$

$T_{\text {nbp }}(K)$	P (torr) @ 40		
		$\Delta_{\text {vap }} H_{m}(\mathrm{~J} / \mathbf{m o l})$	$\Delta_{\text {vap }} S_{m}(\mathrm{~J} / \mathbf{m o l} . \mathrm{K})$

Q.6 For ethane, critical constants are $\mathrm{P}_{\mathrm{C}}=48.2 \mathrm{~atm}, \mathrm{~T}_{\mathrm{C}}=305.4 \mathrm{~K}$. Calculate the pressure (\boldsymbol{P} in $\mathbf{~ a t m}$) exerted by 50 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ in a $500 \mathrm{~cm}^{3}$ vessel at $50^{\circ} \mathrm{C}$ using the following equations of state:
(a) Ideal gas equation (b) Van der Waal's equation and (c) Virial equation given that virial coefficients for ethane $\mathrm{B}=-157 \mathrm{~cm}^{3} / \mathrm{mol}, \mathrm{C}=9650 \mathrm{~cm}^{6} / \mathrm{mol}^{2}$ at $50^{\circ} \mathrm{C}$.
$[3+7+5=15]$
Q. 7 For 88 g of a hypothetical hydrocarbon gas A of molar mass $44 \mathrm{~g} / \mathrm{mol}$ occupying a volume of $160 \mathrm{~cm}^{3}$ at a temperature of 320 K , calculate the pressure (\boldsymbol{P} in atm) using:
(a) the Redlich-Kwong (R-K) state equation. [Useful information: Use Redlich-Kwong (R-K) constants of A as: $\boldsymbol{a}=1.074 \times 10^{8} \mathrm{~cm}^{6}$ atmK $\left.{ }^{1 / 2} \mathrm{~mol}^{-2}, \boldsymbol{b}=50 \mathrm{~cm}^{3} / \mathrm{mol}\right]$.
(b) the given compressibility factor $\mathrm{Z}=0.8$.

$$
[5+3=8]
$$

Q. 8 Argon (Ar) considered as perfect gas, answer the following:
(a) For 15 g of Ar in a container, find the number of molecules of gas $\left(\boldsymbol{d} \boldsymbol{N}_{v}\right)$ within the speed interval $200 \mathrm{~m} / \mathrm{s}$ to $200.001 \mathrm{~m} / \mathrm{s}$ at 340 K and 1 atm . (Molar mass of $\mathrm{Ar}=40 \mathrm{~g} / \mathrm{mol}$).
(b) Calculate the temperature (\boldsymbol{T} in \mathbf{K}) at which the molecular speed distribution function ($\mathrm{G}(\mathrm{v}$)) of Ar gas at $200 \mathrm{~m} / \mathrm{s}$ and $800 \mathrm{~m} / \mathrm{s}$ are equal considering the same infinitesimal thicknesses of 0.001 m / s.
(c) Calculate the mean free path ($\boldsymbol{\lambda} \mathrm{in} \mathbf{~ m}$) of Ar , given the collision diameter (d) as $5 \times 10^{-10} \mathrm{~m}(5 \AA)$, at 340 K and 1 atm .

