BIT S PILANI K.K. BIRLA GOA CAMPUS.

FIRST SEMESTER 2022-2023
PHYSICAL CHEMISTRY I (CHEM F211)
MARKS :70

MID SEMESTER TEST (CLOSED BOOK)
DURATION: 90 MINUTES
02/11/2022

Answer all questions. All parts of the question should be answered together in the Answer template provided.
Useful data: $\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})=1.987 \mathrm{cal} /(\mathrm{mol}-\mathrm{K})=82.06 \mathrm{~cm}^{3} \mathrm{~atm} /(\mathrm{mol}-\mathrm{K})$; Molar masses of $\mathrm{He}, \mathrm{H}, \mathrm{O}, \mathrm{C}, \mathrm{N}=4.00$, $1.0,16.0,12.0,14.0 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively; 1 bar $=0.9869 \mathrm{~atm}=750$ torr; Avogadro's constant $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Q.1(a) A certain perfect gas with $\mathrm{C}_{\mathrm{V}, \mathrm{m}}=2.5 \mathrm{R}$, at all temperatures, undergoes a reversible isobaric expansion from $1.00 \mathrm{~atm}, 20 \mathrm{dm}^{3}$ to $1.00 \mathrm{~atm}, 40 \mathrm{dm}^{3}$. Calculate $\mathrm{w}, \mathrm{q}, \Delta \mathrm{U}$ and ΔH for 2 moles. All energy units should be reported in kJ .

\mathbf{w}	\mathbf{q}	$\mathbf{\Delta U}$	$\mathbf{\Delta H}$

Q.1(b) Calculate the change in entropy when 2.50 moles of a perfect monatomic gas undergoes the following change from $(1.50 \mathrm{~atm}, 400 \mathrm{~K}) \rightarrow(3.00 \mathrm{~atm}, 600 \mathrm{~K})$ with $\mathrm{C}_{\mathrm{V}, \mathrm{m}}=1.5 \mathrm{R}$ for all temperatures .
Q.2(a) The standard enthalpy of formation at $25^{\circ} \mathrm{C}$ of liquid methyl acetate, $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$, is - $442 \mathrm{~kJ} / \mathrm{mol}$. Find the $\boldsymbol{\Delta}_{\mathbf{c}} \mathbf{H}^{\circ}{ }_{298}$ and $\boldsymbol{\Delta}_{\mathbf{f}} \mathbf{U}^{\circ}{ }_{298}$ of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}(l)$. Given the standard heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are -393.51 and $-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

$\Delta_{\mathrm{c}} \mathrm{H}^{\circ}{ }_{298}(\mathrm{~kJ} / \mathrm{mol})$	$\Delta_{\mathrm{f}} \mathrm{U}^{\circ}{ }_{298}(\mathrm{~kJ} / \mathrm{mol})$

Q.2(b) For solid 1,2,3-trimethylbenzene, $C^{\circ}{ }_{P, \mathrm{~m}}=0.62 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ at 10.0 K . Find $S^{\circ}{ }_{\mathrm{m}}$ at 10.0 K for this substance. Find $S^{\circ}{ }_{\mathrm{m}}$ at 6.0 K for this substance.

S_{m}° at $10.0 \mathrm{~K}(\mathrm{~J} / \mathrm{mol}-\mathrm{K})$	$S^{\circ}{ }_{\mathrm{m}}$ at $6.0 \mathrm{~K}(\mathrm{~J} / \mathrm{mol}-\mathrm{K})$

Q.3(a) At $100^{\circ} \mathrm{C}$, the vapour pressures of hexane and octane are 1836 and 354 torr respectively. A certain liquid mixture of these two compounds has a vapour pressure of 666 torr at 100 ${ }^{\circ} \mathrm{C}$. Find the mole fraction in the liquid mixture and in the vapour phase. Assume an ideal solution. Report all answers in three places of decimal.

$\boldsymbol{x}_{\text {hex, }, l}$	$\boldsymbol{x}_{\text {oct }, l}$	$\boldsymbol{x}_{\text {hex, }}$	$\boldsymbol{x}_{\text {oct,v }}$

Q.3(b) Using the slope method, the tangent drawn to the curve at $\boldsymbol{n}_{\mathrm{MgSO} 4}=0.05 \mathrm{~mol}$ is found to have a slope of $-0.54 \mathrm{~cm}^{3} / \mathrm{mol}$. If the volume of the solution is $1001.697 \mathrm{~cm}^{3} / \mathrm{mol}$, find the partial molar volumes of MgSO_{4} and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$ for a $0.05 \mathrm{~mol} / \mathrm{kg} \mathrm{MgSO}_{4}(\mathrm{aq})$ solution. [4]

$\bar{V}_{\mathrm{MgSO}_{4}}$	$\bar{V}_{\mathrm{H}_{2} \mathrm{O}}$

Q.4(a) Find $\Delta \mathbf{A}$ and $\Delta \mathbf{G}$ (in J) when 0.200 mol of $\mathrm{He}(\mathrm{g})$ is mixed at constant T and P with 0.300 mol of $\mathrm{O}_{2}(\mathrm{~g})$ at $27^{\circ} \mathrm{C}$. Assume ideal gases.

$\Delta \mathrm{A}$	$\Delta \mathrm{G}$

Q.4(b) For a liquid with a typical values $\alpha=10^{-3} \mathrm{~K}^{-1}, \kappa=10^{-4} \mathrm{~atm}^{-1}, V_{\mathrm{m}}=50 \mathrm{~cm}^{3} / \mathrm{mol}, C_{P, \mathrm{~m}}=$ $40 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$, calculate at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}(\mathbf{a})\left(\partial H_{m} / \partial P\right)_{T} \cdot(\mathbf{b})(\partial U / \partial V)_{T}$. Report all answers with proper units (with energy units in Joules).

$\left(\partial H_{m} / \partial P\right)_{T}$	$(\partial U / \partial V)_{T}$

Q. 5 At $35^{\circ} \mathrm{C}$, the vapor pressure of chloroform is 295.1 torr, and that of ethanol (eth) is 102.8 torr. A chloroform-ethanol solution at $35^{\circ} \mathrm{C}$ with $x^{l}{ }_{\text {eth }}=0.200$ has a vapor pressure of 304.2 torr and a vapor composition of $x_{\text {eth }}^{\nu}=0.138$.
$[8(2 x 4)+3]$
(a) Calculate $\boldsymbol{\gamma}_{\mathrm{I}}$ and $\boldsymbol{a}_{\mathrm{I}}$ for chloroform and for ethanol in this solution.
(b) Calculate $\boldsymbol{\Delta} \boldsymbol{G}$ for the mixing of 0.20 mol of liquid ethanol and 0.80 mol of liquid chloroform at 35°.

$\gamma_{\mathrm{I}}($ eth $)$	$\gamma_{\mathrm{I}}($ chl $)$	$a_{\mathrm{I}}($ eth $)$	$a_{\mathrm{I}}($ chl $)$	$\Delta \boldsymbol{G}$

Q. 6 Choose the Correct alternative/s
 [$3 \times 3=9$]

(i) In the reaction, $\mathbf{2 N H}_{\mathbf{3}} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{3} \mathbf{H}_{\mathbf{2}}$, suppose initially 0.80 mol of $\mathrm{NH}_{3}, 0.70 \mathrm{~mol}$ of H_{2} and 0.40 mol of N_{2} are present. After some time $\boldsymbol{t}, 0.55 \mathrm{~mol}$ of H_{2} are present. What is $\boldsymbol{\xi}$ and the number of moles of NH_{3} and N_{2} present at time t respectively.
(a) $0.05,0.90,0.40$
(b) $0.10,0.85,0.45$
(c) $-0.05,0.90,0.35$
(d) $0.20,1.00,0.50$
(ii) A heat engine absorbs 750 KJ of heat from the source at 400 K and rejects 500 kJ of heat to the sink at 300 K . This represents a / an \qquad cycle.
(a) Reversible
(b) Impossible
(c) Irreversible
(d) Data insufficient
(iii) For the electrolyte Calcium Phosphate, $\boldsymbol{v}_{ \pm}$is
(a) 81
(b) 1.73
(c) 2.55
(d) 108

