BITS PILANI K.K. BIRLA GOA CAMPUS.

FIRST SEMESTER 2022-2023 PHYSICAL CHEMISTRY I (CHEM F211)

MID SEMESTER TEST (CLOSED BOOK) DURATION: 90 MINUTES

MARKS :70

02/11/2022

Answer all questions. All parts of the question should be answered together in the Answer template provided.

Useful data: R = 8.314J/(mol-K)= 1.987 cal/(mol-K)= 82.06 cm³atm/(mol-K); Molar masses of He, H, O, C, N = 4.00, 1.0, 16.0, 12.0,14.0 g mol⁻¹ respectively; 1 bar = 0.9869 atm= 750 torr; Avogadro's constant = $6.022 \times 10^{23} \text{ mol}^{-1}$

Q.1(a) A certain perfect gas with $C_{V,m} = 2.5$ R, at all temperatures, undergoes a reversible isobaric expansion from 1.00 atm, 20 dm³ to 1.00 atm, 40 dm³. Calculate w, q, ΔU and ΔH for 2 moles. All energy units should be reported in kJ. [8]

W	q	ΔU	ΔΗ

Q.1(b) Calculate the change in entropy when 2.50 moles of a perfect monatomic gas undergoes the following change from (1.50 atm , 400 K) \rightarrow (3.00 atm, 600 K) with $C_{V,m} = 1.5$ R for all temperatures . [5]

Q.2(a) The standard enthalpy of formation at 25°C of liquid methyl acetate, CH₃COOCH₃, is - 442 kJ/mol. Find the $\Delta_c H^{\circ}_{298}$ and $\Delta_f U^{\circ}_{298}$ of CH₃COOCH₃ (*l*). Given the standard heats of formation of CO₂(g) and H₂O(*l*) are – 393.51 and -285.83 kJ mol⁻¹ respectively. [8].

$\Delta_{\rm c} {\rm H}^{\circ}_{298} ({\rm kJ/mol})$	$\Delta_{\rm f} {\rm U}^{\circ}_{298} ({\rm kJ/mol})$

Q.2(b) For solid 1,2,3-trimethylbenzene, $C^{\circ}_{P,m} = 0.62 \text{ J mol}^{-1} \text{ K}^{-1}$ at 10.0 K. Find S°_{m} at 10.0 K for this substance. Find S°_{m} at 6.0 K for this substance. [6]

S°_{m} at 10.0 K(J/mol-K)	S°_{m} at 6.0 K(J/mol-K)

Q.3(a) At 100 °C, the vapour pressures of hexane and octane are 1836 and 354 torr respectively. A certain liquid mixture of these two compounds has a vapour pressure of 666 torr at 100 °C. Find the mole fraction in the liquid mixture and in the vapour phase. Assume an ideal solution. Report all answers in three places of decimal.

$x_{\text{hex},l}$	$x_{\text{oct},l}$	$x_{hex,v}$	$x_{oct,v}$

Q.3(b) Using the slope method, the tangent drawn to the curve at $n_{MgSO4} = 0.05$ mol is found to have a slope of -0.54 cm³/mol. If the volume of the solution is 1001.697 cm³/mol, find the partial molar volumes of MgSO₄ and H₂O(cm³/mol) for a 0.05 mol/kg MgSO₄ (*aq*) solution. **[4]**

$\overline{V}_{\rm MgSO_4}$	$\overline{V}_{\mathrm{H}_{i}\mathrm{O}}$

Q.4(a) Find ΔA and ΔG (in J) when 0.200 mol of He(g) is mixed at constant T and P with 0.300 mol of O₂(g) at 27°C. Assume ideal gases. [5]

[8]

Q.4(b) For a liquid with a typical values $\alpha = 10^{-3} \text{ K}^{-1}$, $\kappa = 10^{-4} \text{ atm}^{-1}$, $V_{\rm m} = 50 \text{ cm}^3/\text{mol}$, $C_{P,\rm m} = 40 \text{ cal/mol-K}$, calculate at 25°C and 1 atm (**a**) $(\partial H_m/\partial P)_T$.(**b**) $(\partial U/\partial V)_T$.Report all answers with proper units (with energy units in Joules). [3 + 3 = 6]

$(\partial H_m/\partial P)_T$	$(\partial U/\partial V)_T$

Q.5 At 35°C, the vapor pressure of chloroform is 295.1 torr, and that of ethanol (eth) is 102.8 torr. A chloroform–ethanol solution at 35°C with $x^{l}_{eth} = 0.200$ has a vapor pressure of 304.2 torr and a vapor composition of $x^{v}_{eth} = 0.138$. [8(2x4) + 3]

(a) Calculate γ_{I} and a_{I} for chloroform and for ethanol in this solution.

(b) Calculate ΔG for the mixing of 0.20 mol of liquid ethanol and 0.80 mol of liquid chloroform at 35°.

γ _I (eth)	γ _I (chl)	<i>a</i> _I (eth)	<i>a</i> _I (chl)	ΔG

Q.6 Choose the Correct alternative/s

 $[3 \times 3 = 9]$

- (i) In the reaction, $2NH_3 \rightarrow N_2 + 3H_2$, suppose initially 0.80 mol of NH₃, 0.70 mol of H₂ and 0.40 mol of N₂ are present. After some time *t*, 0.55 mol of H₂ are present. What is ζ and the number of moles of NH₃ and N₂ present at time *t* respectively.
 - (a) 0.05, 0.90, 0.40 (b) 0.10,0.85, 0.45 (c) -0.05, 0.90,0.35 (d) 0.20, 1.00, 0.50
- (ii) A heat engine absorbs 750 KJ of heat from the source at 400 K and rejects 500 kJ of heat to the sink at 300 K. This represents a/an cycle.
 - (a) Reversible (b) Impossible (c) Irreversible (d) Data insufficient
- (iii) For the electrolyte Calcium Phosphate, v_{\pm} is (a) 81 (b) 1.73 (c) 2.55 (d) 108