Birla Institute of Technology \& Science, Pilani, Rajasthan - 333031

First Semester 2022-2023, Mid Semester Examination (Open Book)

Subject: Physical Chemistry -I (PC-1)
Course Code: CHEM F211

Duration: 90 minutes
Date: November 4, 2022
Max. Marks: 60
Note: Please check that the question paper is printed on both sides. Attempt all the questions. Start answering each question on a fresh page and answer all parts of the question together. Pencil should not be used. Symbols have usual meaning.

Do not scribble on the question paper.
Q1. (i) At 573 K temperature and 0.60 atm. pressure the Joule-Thomson coefficient of N_{2} is given by $\mu=0.0142-2.60 \times 10^{-4} P$. Assuming the equation to be independent of temperature near $300^{\circ} \mathrm{C}$ determine the temperature drop which may be expected on Joule-Thompson expansion of the gas from 60 atm. to 20 atm.
[3 M]
(ii) For an ideal gas, $\left(\frac{\partial U}{\partial V}\right)_{T}=0$, from this information show that $\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=0$. Here, U and C_{V} are the internal energy and specific heat at constant volume respectively.
(iii) Establish the relation $C_{P}-C_{V}=\frac{\alpha^{2} V T}{\beta}$, where α and β is the thermal expansivity and isothermal compressibility respectively. C_{p} and C_{V} is the specific heat at constant pressure and constant volume respectively. T is the temperature and V is the volume.
[5 M]
(iv) Define Helmholtz free energy (A) and explain its physical significance in just one sentence. Calculate $\Delta \mathrm{A}$ for the vaporization of 0.1 mole $\mathrm{H}_{2} \mathrm{O}$ at 1.0 atm . pressure and $100^{\circ} \mathrm{C}$. [Given, molar volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ at $100^{\circ} \mathrm{C}$ is $18.8 \mathrm{ml} \mathrm{mol}^{-1}$ and that of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $30.6 \mathrm{~L} \mathrm{~mol}^{-1}$.
(v) One mole of an ideal monoatomic gas undergoes a reversible isothermal change at $25^{\circ} \mathrm{C}$ temperature and 1 atm pressure. The final volume of the gas after the change is twice its initial volume. Calculate heat (q), work done (w) and enthalpy change (ΔH) for this process.

Q2. (i) Compare the thermodynamic efficiency of the following engines. (a) An engine operates between 1000 K and 300 K , and (b) a combination of two engines where the first engine operates between 1000 K and 600 K and waste heat is passed to the second engine working between 600 K and 300 K .
(ii) A given mass of an ideal gas ($C_{P}=5$ Cal K K^{-1} mole ${ }^{-1}$) at $27^{\circ} \mathrm{C}$ is compressed adiabatically and reversibly to one quarter of its volume. Calculate the temperature after compression. Here C_{p} is the specific heat at constant pressure.
(iii) The coefficient of compressibility (β) of water at 298 K is $4.9 \times 10^{-6} \mathrm{~atm}^{-1}$, over the pressure range 1 to 25 atm. Calculate the amount of work required to compress a 1 mole liquid water from 1 atm. to 25 atm. at 298 K temperature. Compare this work with work involved in the compression of 1 mole ideal gas from 1 atm. to 25 atm. at 298 K temperature. In both cases consider the process as reversible. Please provide the unit in Joules. (Density of water is $\mathbf{1 g m} / \mathbf{m l}$ at $\mathbf{2 9 8} \mathrm{K}$)
(iv) One mole of an ideal gas with $C_{V}=3.0 \mathrm{cal}^{-1} \mathrm{~mol}^{-1}$ initially at 273 K temperature, 1 atm . pressure and 22.4 litre volume is put through the following reversible cycle:
(a) State 1 to state 2, heated at constant volume to twice the initial temperature.
(b) State 2 to state 3 expanded adiabatically until it is back to initial temperature.
(c) State 3 to state 1 compressed isothermally back to state 1.

Depict the cycle in V vs T diagram and calculate the amount of heat transfer (q), work (w) and change in internal energy (ΔU) for this cycle. Write in just one sentence what conclusion you can derive from the results.
[5 M]
Q3. (i) Calculate the enthalpy change $(\Delta \mathrm{H})$ at 1500 K for the reaction $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, given that, $\Delta \mathrm{H}_{300 \mathrm{~K}}=115.0 \mathrm{Kcal}$ and the values of $\mathrm{C}_{\mathrm{P}}\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$ are for $\mathrm{H}_{2}(\mathrm{~g})=6.95$ $-0.0002 \mathrm{~T}, \mathrm{O}_{2}(\mathrm{~g})=6.10+0.0032 \mathrm{~T}$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=7.19+0.0024 \mathrm{~T}$. Here C_{P} is the specific heat at constant pressure.
(ii) Calculate the change in entropy, $\Delta \mathrm{S}$, when 10 gm of ice at $0^{\circ} \mathrm{C}$ is added to 50 gm of water at $40^{\circ} \mathrm{C}$ in an isolated system. The latent heat of fusion of ice is $79.7 \mathrm{cal} \mathrm{gm}^{-1}$, the specific heat of water is $1 \mathrm{cal} \mathrm{gm}^{-1} \mathrm{~K}^{-1}$.
(iii) What is the boiling point of water at a place where the atmospheric pressure is 600 mm Hg ? The latent heat of vaporization is $540 \mathrm{cal} / \mathrm{gm}$.
[3 M]
(iv) Calculate the change in Gibbs free energy (ΔG) when 36 gm of water initially at $100^{\circ} \mathrm{C}$ and 10 atm. pressure are converted to vapor at $100^{\circ} \mathrm{C}$ and 0.01 atm . pressure. Given density of water is $1 \mathrm{gm} / \mathrm{ml}$ and the vapor obeys ideal gas law.

Q4. (i) Calculate the number of phases (P), components (C) and degrees of freedom (F) of the following systems at equilibrium.
(a) An aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
(b) Water at its freezing point.
(c) A saturated solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ which is completely dissociates into its component ions, contains an excess of salt.
(ii) At $140^{\circ} \mathrm{C}$, the vapor pressure of pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 939.4 mm of Hg and that of pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ is 495.8 mm of Hg . If a liquid mixture of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ forms an ideal solution, what will be the composition of the mixture in the liquid phase, which boils at $140^{\circ} \mathrm{C}$ under 1 atm. pressure? What will be composition in the vapor phase at this temperature?
(iii) The following standard enthalpies of formation (ΔH_{f}^{0}) and entropies (S^{0}) of the substances at $25^{\circ} \mathrm{C}$ are given

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{f}}^{\mathbf{0}}(\mathbf{K c a l})$	$\boldsymbol{S}^{\mathbf{0}}\left(\boldsymbol{C a l ~ K}^{\mathbf{- 1}}\right)$
Methane $\left(\mathrm{CH}_{4}, \mathrm{~g}\right)$	-17.89	44.5
Formaldehyde $(\mathrm{HCHO}, \mathrm{g})$	-27.7	52.3
Ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{I}\right)$	-66.4	38.4

Calculate the standard free energy change and equilibrium constant at $25^{\circ} \mathrm{C}$ and 1 atm. pressure for the reaction $\mathrm{CH}_{4}(g)+\mathrm{HCHO}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$.
[4 M]
(iv) Calculate activity coefficient of Ba^{2+} and Cl^{-}in a 0.05 M aqueous solution of BaCl_{2} at $25^{\circ} \mathrm{C}$. Also determine the mean activity coefficient of BaCl_{2} in this solution at $25^{\circ} \mathrm{C}$. The Debye-Huckel constant, $\mathrm{A}=0.509$ for an aqueous solution at $25^{\circ} \mathrm{C}$.
[3 M]

