Birla Institute of Technology \& Science, Pilani, Rajasthan - 333031

First Semester 2022-2023, Comprehensive Examination (Closed Book)
Subject: Physical Chemistry I (PC-1) Course Code: CHEM F211
Duration: 180 minutes
Date: December 27, 2022
Max. Marks: 80
Note: Please check that the question paper is printed on both sides. Attempt all the questions. Start answering each question on a fresh page and answer all parts of the question together. Pencil should not be used. Symbols have usual meaning.

Do not scribble on the question paper.

Useful Data: Universal gas constant, $\mathrm{R}=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ or $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ or $0.082 \mathrm{~L}^{\mathrm{L}}$ atm mol${ }^{-1} \mathrm{~K}^{-1}, 1 \mathrm{~L}-$ atm $=24.4$ cal, Faraday constant $(F)=96500$ Coulomb/mole, 1 calorie $=4.2$ Joule, $1 \mathrm{Joule}=10^{7} \mathrm{erg}$, Avogadro number $\left(\mathrm{N}_{\mathrm{A}}\right)=6.023 \times 10^{23}$, Boltzmann constant $(\mathrm{k})=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$, Planck constant $(\mathrm{h})=$ $6.625 \times 10^{-34} \mathrm{~J}$-s, elementary charge $(\mathrm{e})=1.6 \times 10^{-19}$ Coulomb, 1 atomic mass unit $=1.6603 \times 10^{-27} \mathrm{~kg}$, 1 atmospheric pressure unit $=760 \mathrm{~mm}$ of $\mathrm{Hg}(101.325 \mathrm{kPa})$

Q1. (i) The vapor pressure of $\mathrm{NH}_{4} \mathrm{HS}$ is 50 cm of Hg at $25^{\circ} \mathrm{C}$. Calculate the total pressure when $\mathrm{NH}_{4} \mathrm{HS}$ dissociates at $25^{\circ} \mathrm{C}$ in a vessel, which already contains NH_{3} at a pressure of 32 cm of Hg . Given $\mathrm{NH}_{4} \mathrm{HS}$ dissociates as $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \leftrightharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$.
(ii) The equilibrium constant for the gaseous reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g})$ at $427^{\circ} \mathrm{C}$ is K $=55.3$.
(a) What amount of HI (in gms unit) will be formed at equilibrium if 1 mole of H_{2} and 1 mole of I_{2} is placed in a one litre vessel at $427^{\circ} \mathrm{C}$? (Given molecular weight of HI is $128 \mathrm{gm} / \mathrm{mole}$.)
(b) Will there be any reaction at $427^{\circ} \mathrm{C}$ in a mixture consisting of 0.70 atm of HI and 0.02 atm of H_{2} and I_{2} (these are the partial pressure of the respective chemicals)?

If so, in which direction the reaction will occur?
(iii) The vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ at 373.6 K and 372.6 K is 1.018 atm . and 0.982 atm . respectively. Calculate molar entropy of vaporization and change in volume per mole when water vaporizes at 373 K . Assume that the water vapor behaves ideally
(iv) A mixture of benzene and toluene contains 30% by weight of toluene. The vapor pressure of pure toluene and pure benzene is 36.7 mm of Hg and 118.2 mg of Hg respectively at $30^{\circ} \mathrm{C}$. If the mixture of benzene and toluene form an ideal solution, calculate the total pressure and partial pressure of each constituent above the solution at $30^{\circ} \mathrm{C}$. (Given molecular weight of toluene and benzene is $92 \mathrm{gm} / \mathrm{mol}$ and $78 \mathrm{gm} / \mathrm{mol}$ respectively.)
(v) Calculate the entropy of mixing if two moles of N_{2} gas are mixed with one mole of O_{2} gas at the same temperature and pressure. Assume ideal behavior for the gas.
[2 M]
Q2. (i) 1 gm of urea when dissolved in 100 gm of a certain solvent decreases its freezing point by $0.2^{\circ} \mathrm{C} .1 .6 \mathrm{gm}$ of unknown substance when dissolved in 80 gm of same solvent decreases the freezing point by $0.36^{\circ} \mathrm{C}$. Calculate the molecular weight of the unknown compound. (Given molar mass of urea is $60 \mathrm{gm} \mathrm{mol}^{-1}$)
(ii) Blood is said to be isotonic (having same osmotic pressure) with $0.85 \% \mathrm{NaCl}$ solution (weight/volume) at $40^{\circ} \mathrm{C}$. Assuming complete dissociation of NaCl , calculate total concentration of various solutes in blood. What will be approximate freezing point of blood? (Given freezing point constant, $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} /$ molal)
(iii) Given vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.8 mm of Hg , calculate the vapor pressure of 20% (weight/weight) glucose solution. (Molecular weight of glucose and water is 180 gm/mole and $18 \mathrm{gm} /$ mole respectively)
[3 M]
(iv) If boiling point of an aqueous solution is $100.1^{\circ} \mathrm{C}$, what is its freezing point? Given latent heat of fusion $\left(\mathrm{I}_{\mathrm{f}}\right)$ and vaporization $\left(\mathrm{I}_{\mathrm{v}}\right)$ is 80 calorie/gm and 540 calorie/gm respectively. Given normal boiling point and freezing point of water is $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively at 1 atm pressure. Consider the pressure is 1 atm pressure.
(v) A totally immiscible liquid system composed of $\mathrm{H}_{2} \mathrm{O}$ and an organic liquid boil at $90^{\circ} \mathrm{C}$ when barometer reads 734 mm of Hg . The distillate contains 73% by weight of the organic liquid. What is the molecular weight and vapor pressure at $90^{\circ} \mathrm{C}$ of the organic liquid? (Given vapor pressure of water at $90^{\circ} \mathrm{C}$ is 526 mm of Hg)
[3 M]
(vi) A solution composed of 10 gm of a non-volatile solute in 100 gm diethyl ether, has vapor pressure 426 mm of Hg at $20^{\circ} \mathrm{C}$. If vapor pressure of pure ether is 442.2 mm of Hg at the same temperature, what is the molecular weight of the solute? (Given molecular weight of diethyl ether is $74 \mathrm{gm} / \mathrm{mol}$)

Q3. (i) The thermodynamic dissociation constant for acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.75×10^{-5} at $25^{\circ} \mathrm{C}$. Calculate using Debye-Huckel theory, the degree of dissociation of 0.001 M acetic acid in $0.05 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
[5 M]
(ii) An aqueous solution contains 0.01 M propionic acid and 0.02 M sodium propionate at $25^{\circ} \mathrm{C}$. Find pH , hydrogen ion concentration and degree of dissociation of propionic acid in this solution. (Given dissociation constant of propionic acid is $\mathrm{K}_{\mathrm{a}}=1.34 \times 10^{-5}$)
(iii) Solubility of a sparingly soluble salt AgCl at $25^{\circ} \mathrm{C}$ is $10^{-4} \mathrm{M}$. Calculate its solubility in 0.1 M AgNO_{3} solution. (Consider the effect of ionic strength. The Debye-Huckel constant A at $25^{\circ} \mathrm{C}$ is 0.51)
[4 M]
(iv) The degree of dissociation of a weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ is found to be 10% when the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ in an aqueous solution is 0.001 M . Calculate the expected degree of dissociation of the $0.001 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ in a solution containing 0.1 M NaCl . (Given the DebyeHuckel constant, A of the solution is 0.51)

Q4. (i) The electromotive force for the cell, $\mathrm{Zn}(\mathrm{s})\left|\mathrm{ZnCl}_{2}(m)\right| \operatorname{AgCl}(s), \operatorname{Ag}(s)$ is $\mathrm{E}=1.240 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ and 1.260 V at $35^{\circ} \mathrm{C}$ if $\mathrm{m}_{\mathrm{ZnCl2}}=1 \times 10^{-3} \mathrm{molal}$. Write down the cell reaction and calculate $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ at $25^{\circ} \mathrm{C}$.
(ii) For the cell (Pt) $\mathrm{H}_{2}|\mathrm{HCl}| \mathrm{AgCl}(\mathrm{s}), \mathrm{Ag}(\mathrm{s}), \mathrm{E}^{0}=0.222 \mathrm{~V}$. If the measured electromotive force of the cell is 0.385 V , what is the pH of the solution? (Given $P_{\mathrm{H}_{2}}=1 \mathrm{~atm}$, and the temperature is $25^{\circ} \mathrm{C}$)
(iii) The electromotive force of the cell $Z n(s) \mid Z n^{2+}(a=0.01) \| F e^{3+}(a=0.01), F e^{2+}(a=$ $0.001) \mid P t$ is $\mathrm{E}=1.71 \mathrm{~V}$ (volt). Calculate the equilibrium constant of the cell reaction of this cell. (Consider the temperature of the reaction is $25^{\circ} \mathrm{C}$.)
(iv) The potential of the cell $\mathrm{Cd}(\mathrm{s})\left|\mathrm{Cdl}_{2}(a) \mathrm{Agl}(\mathrm{s})\right| \mathrm{Ag}(\mathrm{s})$ is found to be $\mathrm{E}=0.2860$ at $25^{\circ} \mathrm{C}$. Calculate the mean ionic activity of the ions in the solution and the activity of the electrolyte. (Given $E_{C d^{2+} / C d}^{0}=-0.403 \mathrm{~V}$ and $E_{A g I_{I^{-}}}^{0}=-0.1522 \mathrm{~V}$)
(V) Calculate the root mean square velocity of oxygen molecule having kinetic energy of 2 $\mathrm{Kcal} / \mathrm{mole}$. What would be the temperature of the oxygen molecule?
[2 M]

