Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 COMPREHENSIVE EXAMINATION Ist Semester 2017-2018

Name:		ID No	
Course No: CHEM F212 Max. Marks: 30	Course Title: ORGANIC CHEMIST Time: 60 minutes		Y I PART I (CLOSED BOOK) Date: 09 th December 2017
Note: Write your name and I Part I contains 14 questions of the questions (Q. No. 1-12 solved in the space provided	D no. on the question p in all. Indicate the mos 2). Use a blue or a blac Part II may be collecte	aper. All questions are compu t appropriate answer by enter ck point pen. Each question (Q ed after submitting Part I.	lsory. ing A, B, C or D in boxes provided in front J. 1-12) carries 2 mark. Q. 13-14 are to be
Q.No.1. The correct order acid (R) and formic acid (R) (A) $P > Q > R > S$	of decreasing acid str S) is B) $P > R > Q > S$	rength of trichloroacetic acid (C) $Q > P > S > R$	d (P), trifluoroacetic acid (Q), acetic (D) $Q > S > R > P$
Q.No.2. Which one of the (A) Reimer-Tieman reaction (C) Aldol condensation	following reactions w on (B) (D	vill not result in the formatio) Friedel Crafts acylation) Cannizzaro reaction	on of carbon-carbon bond?
Q.No.3. The correct seque (A) nucleophilic attack by (B) electrophilic attack by (C) transfer of H ⁻ , transfer (D) transfer of H ⁺ , nucleop	nce of steps involved OH ⁻ , transfer of H ⁻ an OH ⁻ , transfer of H ⁺ a of H ⁺ and nucleophil philic attack and trans	in the mechanism of Canniz nd transfer of H ⁺ nd transfer of H ⁻ ic attack fer of H ⁻	zzaro's reaction is
Q.No.4. Which one of the N_2 COOMe	following is the final (A) — CO	product for the given chemi OMe (B)	ical transformation?

(C) Thermodynamic control favors formation of 1-chloro-2-butene(D) Kinetic control favors formation of 1-chloro-2-butene

(B) Kinetic control favors formation of 3-chloro-1-butene

(C)

At low temperatures $(-78^{\circ}C)$, which of the following statements is correct?

(A) Thermodynamic control favors formation of 3-chloro-1-butene

heat

Q.No.6. Which one of the following chemical equations correctly represents the formation of the major product? *(ignore balancing of reactions)*

Q.No.5. When 1,3-butadiene reacts with HCl, two products, 3-chloro-1-butene and 1-chloro-2-butene are formed.

(D)

COOMe

Q.No.7. A Michael reaction is an example of a conjugate addition. What is a conjugate addition?

N-COOMe

- (A) It is a synchronous addition of an electrophile and nucleophile to a double bond
- (B) It is a nucleophilic addition to a triple bond followed by protonation

.....

(C) It converts an α , β -unsaturated ketone into a substituted saturated ketone

(D) It is a nucleophilic addition to an aromatic ring followed by expulsion of a leaving group

Q.No.8. Which one of the following is the most appropriate reducing agent for carrying direct reductive amination of ketones (without isolating imines)? (B) LiAlH₄ (A) $NaBH_4$ (C) NaBH(CN)₃ (D) H₂/Ni

O.No.9. Which one is the major product of the following reaction?

Q.No.10. The order **not correct** for basic strength of amines is

- (A) Dimethyl amine > methyl amine > trimethyl amine in aqueous solution
- (B) Trimethyl amine > dimethyl amine > methyl amine in gas phase
- (C) methyl amine > aniline
- (D) aniline > pyridine

O.No.11. Which one of the arenium ions is **not** involved in the bromination of aniline?

Q.No. 13. Draw the missing structures in the following reaction sequence.

.....

Q.No. 14. Identify the product & Propose a detailed mechanism for the following chemical transformation. [4]

Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 COMPREHENSIVE EXAMINATION Ist Semester 2017-2018

Course No: CHEM F212Course Title: ORGANIC CHEMISTRY I
Time: 120 minutesPART II (OPEN BOOK)
Date: 09th December 2017

Note: Write your name and ID no on the question paper and answer sheet. All questions are compulsory.

Q. No. 1. (i) Consider the following reaction, and the plot of its $log(k_x/K_H)$ versus σ_x for different substituents (X) present on phenyl ring.

(a) Determine the reaction constant for this reaction, and propose a mechanism showing the transition state involved. [1+2] (b) Comment on the effect of positive and negative values of σ_x on the stability of transition state and k_x . [2] (c) Predict the rate constant (k_x) for substitution reaction of *N*,*N*-dimethyl *para*-nitroaniline, if $k_H = 3.44 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$ and σ_x (*p*-NO₂) = 0.78. [1]

(ii) A competitive experiment was performed for the borohydride reductions of benzaldehyde and deuterated benzaldehyde separately (Reactions 1 & 2, Figure 1). The respective rate constants k_1 and k_2 for the reactions 1 & 2 are 0.14 M⁻¹ s⁻¹ and 0.20 M⁻¹ s⁻¹ respectively. (a) Determine the type of isotope effect & Justify. [1] (b) Identify the structure of product(s) in each case, and comment on their optical activity. [3]

Q. No. 2. (i) Compare the reaction of p-chlorotoluene with KNH₂ followed by addition of water with the reaction of *m*-chlorotoluene under same conditions. Identify the structures of possible products in both cases with justification. [5]

(ii) You are provided with four compounds ($\mathbf{P} = 2$ -Bromobenzaldehyde; $\mathbf{Q} = 3$ -Bromobenzaldehyde; $\mathbf{R} = 4$ -Bromotoluene; $\mathbf{S} = 4$ -Bromoanisole. Which one of these (\mathbf{P} - \mathbf{S}) is most likely to undergo ammonolysis fastest *via* addition-elimination pathway ? Explain. Draw a detailed energy profile diagram for the above reaction showing the structures of intermediate(s) and labeling slow/fast steps. [2+3]

Q. No. 3. Predict the structure of the product(s) and propose a detailed mechanism for the following chemical transformations. [3+4+3=10]

Q. No. 4. Propose a detailed mechanism for the following chemical transformations. [2x5=10]

Q. No. 5. (i) Identify the structures of **A-F** in the following series of reactions. (*No mechanism required*) [10x1=10]

Q. No. 6. (i) Consider the hydrolysis of labeled ethyl ethanoates, 1 or 2, in normal water.

Compound 1 Compound 2

Which of the two compounds (1 or 2) upon hydrolysis will retain ¹⁸O isotope either in the main product or in side product respectively. Justify using an appropriate detailed mechanism. [4]

(ii) Carry out the following conversion using appropriate reagents/solvents/catalyst. [6]

page 2 of 2