First Semester, Academic Year: 2016-2017
CHEM F213
Physical Chemistry - II
Date: 07-12-2016

Comprehensive Examination

Max. Marks: 120

PART - B (Open Book, Time: 120 minutes, Marks: 80)

1 (a) $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{n}}$ are the eigen functions of an operator \hat{O} with corresponding eigenvalue o_{1}, $\mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{n}}$, respectively. Particular state of a system is described by a normalized wavefunction, ψ given by: $\psi=\frac{1}{2} g_{1}-\left(\frac{3}{8}\right)^{1 / 2} g_{2}+\left(\frac{3}{8} i\right)^{1 / 2} g_{3}$. What would be the outcome of measuring the observable corresponds to the operator \hat{O} ?
(b) An unperturbed system is having a doubly degenerate energy level. The perturbation integrals are having the values $H_{11}^{\prime}=4 b, H_{12}^{\prime}=2 b, H_{22}^{\prime}=6 b$, where b is a positive constant, $H_{j k}^{\prime}=\left\langle\psi_{j}^{(0)}\right| \widehat{H}^{\prime}\left|\psi_{k}^{(0)}\right\rangle$, and $\delta_{j k}=\left\langle\psi_{j}^{(0)} \mid \psi_{k}^{(0)}\right\rangle$. (i) Express the form of the secular equation and determine the values of $E^{(1)}$ in terms of b. (ii) Find the normalized correct zeroth-order wave functions.
2 (a) Suppose you are measuring Z-component of spin angular momentum ($\widehat{S_{Z}}$) using a Stern-Gerlach type of instrument. Outcome of the measurement for an electron is $\frac{1}{2} \hbar$. Then you direct the electron to enter into a second Stern-Gerlach type of instrument to measure the X-component of spin angular momentum ($\widehat{S_{x}}$). What would be the probability of each possible outcome? Explain your answer.
(b) Consider the following determinantal wave function:
$\psi=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}\psi_{211} \alpha(1) & \psi_{21-1} \beta(1) \\ \psi_{211} \alpha(2) & \psi_{21-1} \beta(2)\end{array}\right|$, where $\psi_{21 \pm 1}$ is a hydrogen atom wave
function. Determine whether ψ is an eigen function of ${\widehat{L_{z}} \text {,total }}$ and $\widehat{S_{z, \text { total }}}$.
(c) (i) Prove that the Hartree-Fock orbital energies ϵ_{i} can be expressed as $\epsilon_{i}=E-E^{+}$, where E and E^{+}are the energies of the neutral atom and ion, respectively.
(ii) Use this concept to determine $\left(E-E^{+}\right)$for Be and Be^{+}system.

3
(a) Use Heitler-London valence-bond treatment of H_{2} starting with $\psi=\mathrm{c}_{1} \psi_{1}+\mathrm{c}_{2} \Psi_{2}$, where $\psi_{1}=\left|\begin{array}{ll}1 s_{A} \alpha(1) & 1 s_{B} \beta(1) \\ 1 s_{A} \alpha(2) & 1 s_{B} \beta(2)\end{array}\right|, \psi_{2}=\left|\begin{array}{ll}1 s_{A} \beta \text { (1) } & 1 s_{B} \alpha \text { (1) } \\ 1 s_{A} \beta \text { (2) } & 1 s_{B} \alpha(2)\end{array}\right|$.
(i) Determine the values of $H_{i i}$ and $H_{i j}$.
(ii) Determine the values of $S_{i i}$ and $S_{i j}$.
(iii) Write down the expression for Secular determinant using the results obtained in part (i) and part (ii).
(b) Predict the electronic configuration and π-electron binding energy in case of
(i) butadiene anion and (ii) butadiene cation.
(c) The infrared absorption spectrum of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ has its strongest band at $8.65 \times 10^{13} \mathrm{~Hz}$.

For this molecule D_{0} is 4.43 eV . Find D_{e} for ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$.

4 (a) For an electronic transition the transition moment integral is having the form: $M=\int \psi^{*} \hat{\mu} \psi d \tau$, where ψ^{*} represents the wave function for electronic excited state, ψ represents the wave function for electronic ground state, and $\hat{\mu}$ is the dipole moment operator. Derive the expression for (i) Franck-Condon factor, (ii) basis of orbital selection rule, and (iii) basis of spin selection rule.
(b) In pure rotational Raman spectroscopy, selection rule is $\Delta \mathrm{J}=0$ or ± 2 only.
(i) What would be the frequency for $\Delta \mathrm{J}=0$ transition.
(ii) What would be the frequency of Stoke's and Anti-Stoke's lines for $\Delta \mathrm{J}= \pm 2$ transitions. Derive an expression for each type.
(c) Consider the following vibrational mode of benzene (6a). Assume, $\boldsymbol{v}_{1}, \mathrm{v}_{2}$, and v_{3} are the frequency of 6 a vibrational mode in electronic ground state $\left(\mathrm{S}_{0}\right)$, electronic excited state $\left(\mathrm{S}_{1}\right)$, and ionized state, respectively. Arrange these frequencies in ascending order with explanation.

