Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031		
First Semester, Academic Year: 2016-2017		
CHEM F213	Physical Chemistry - II	Comprehensive Examination
Max. Time: 180 minutes	Date: 07-12-2016	Max. Marks: 120
PART - B (Open Book, Time: 120 minutes, Marks: 80)		

- 1 (a) $g_1, g_2,..., g_n$ are the eigen functions of an operator \hat{O} with corresponding eigenvalue o_1 , [6] 02, ..., 0n, respectively. Particular state of a system is described by a normalized wavefunction, ψ given by: $\psi = \frac{1}{2} g_1 - (\frac{3}{8})^{1/2} g_2 + (\frac{3}{8} i)^{1/2} g_3$. What would be the outcome of measuring the observable corresponds to the operator \hat{O} ?
 - An unperturbed system is having a doubly degenerate energy level. The perturbation [4+10] (b) integrals are having the values $H'_{11} = 4b$, $H'_{12} = 2b$, $H'_{22} = 6b$, where b is a positive constant, $H_{jk}^{'} = \langle \psi_j^{(0)} | \widehat{H'} | \psi_k^{(0)} \rangle$, and $\delta_{jk} = \langle \psi_j^{(0)} | \psi_k^{(0)} \rangle$. (i) Express the form of the secular equation and determine the values of $E^{(1)}$ in terms of b. (ii) Find the normalized correct zeroth-order wave functions.
- 2 [5] (a) Suppose you are measuring Z-component of spin angular momentum ($\widehat{S_Z}$) using a Stern-Gerlach type of instrument. Outcome of the measurement for an electron is $\frac{1}{2}\hbar$. Then you direct the electron to enter into a second Stern-Gerlach type of instrument to measure the X-component of spin angular momentum ($\widehat{S_x}$). What would be the probability of each possible outcome? Explain your answer. [2+2]
 - (b) Consider the following determinantal wave function:

$$\psi = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_{2\,1\,1} \alpha \left(1\right) & \psi_{2\,1-1} \beta \left(1\right) \\ \psi_{2\,1\,1} \alpha \left(2\right) & \psi_{2\,1-1} \beta \left(2\right) \end{vmatrix}, \text{ where } \psi_{2\,1\,\pm 1} \text{ is a hydrogen atom wave}$$

function. Determine whether ψ is an eigen function of $L_{z,\text{total}}$ and $S_{z,\text{total}}$. [8+3] (c) (i) Prove that the Hartree-Fock orbital energies \in_i can be expressed as $\in_i = E - E^+$, where E and E^+ are the energies of the neutral atom and ion, respectively.

(ii) Use this concept to determine $(E - E^+)$ for Be and Be⁺ system.

Use Heitler-London valence-bond treatment of H₂ starting with $\psi = c_1 \psi_1 + c_2 \psi_2$, where $\psi_1 = \begin{vmatrix} 1s_A \alpha (1) & 1s_B \beta (1) \\ 1s_A \alpha (2) & 1s_B \beta (2) \end{vmatrix}$, $\psi_2 = \begin{vmatrix} 1s_A \beta (1) & 1s_B \alpha (1) \\ 1s_A \beta (2) & 1s_B \alpha (2) \end{vmatrix}$. 3 (a)

(i) Determine the values of H_{ii} and H_{ij} .

(ii) Determine the values of S_{ii} and S_{ij} .

(iii) Write down the expression for Secular determinant using the results obtained in [2] part (i) and part (ii).

[3]

[4]

- [3+3] (b) Predict the electronic configuration and π -electron binding energy in case of (i) butadiene anion and (ii) butadiene cation.
- The infrared absorption spectrum of ${}^{1}\text{H}{}^{35}\text{Cl}$ has its strongest band at 8.65×10^{13} Hz. [5] (c) For this molecule D_0 is 4.43 eV. Find D_e for ¹H³⁵Cl.

- 4 (a) For an electronic transition the transition moment integral is having the form: [8] M = ∫ ψ* μ̂ ψ dτ, where ψ* represents the wave function for electronic excited state, ψ represents the wave function for electronic ground state, and μ̂ is the dipole moment operator. Derive the expression for (i) Franck-Condon factor, (ii) basis of orbital selection rule, and (iii) basis of spin selection rule.
 - (b) In pure rotational Raman spectroscopy, selection rule is $\Delta J = 0$ or ± 2 only.

(i) What would be the frequency for $\Delta J = 0$ transition.

(ii) What would be the frequency of Stoke's and Anti-Stoke's lines for $\Delta J = \pm 2$ [6] transitions. Derive an expression for each type.

[2]

[4]

6a

(c) Consider the following vibrational mode of benzene (6a). Assume, v_1 , v_2 , and v_3 are the frequency of 6a vibrational mode in electronic ground state (S₀), electronic excited state (S₁), and ionized state, respectively. Arrange these frequencies in ascending order with explanation.

****** End ******