Useful information: $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, mass of electron $\left(\mathrm{m}_{\mathrm{e}}\right)=9.109 \times 10^{-31} \mathrm{~kg}, \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, 1 \mathrm{eV}=$ $1.602 \times 10^{-19} \mathrm{~J}$, Charge of electron (e) $=1.602 \times 10^{-19} \mathrm{C}, \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{k}^{-1}$, Constant in Wien's displacement law $=2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K}$

1 (a) Calculate the de Broglie wavelength of an electron moving at a speed of $1 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Solar spectrum can be approximated as a black body with $\lambda_{\max }$ at around 500 nm . Estimate the temperature of sun.
(c) When a metal (X) is irradiated with light, one finds a stopping potential of 1.83 V for $\lambda=300 \mathrm{~nm}$ and 0.80 V for $\lambda=400 \mathrm{~nm}$. Using this information answer the following:
(i) Calculate the value of Planck's constant. (ii) Calculate threshold frequency. (iii) Calculate the work-function of the metal (X).
(d) An electron is confined to a linear region with a length of the same order as the diameter of an atom ($\sim 100 \mathrm{pm}$). Calculate the minimum uncertainties in it position and speed.

2 (a) A certain one-particle, one-dimensional system has wavefunction, $\Psi=a e^{-i b t} e^{-b m x^{2} / \hbar}$, where a and b are constants and m is the mass of the particle. Find the potential energy function, V , for this system.
(b) Evaluate $\mathrm{g}=\widehat{A} f$ where $\widehat{A}=\mathrm{SQRT}$ and $\mathrm{f}=x^{4}$
(c) Consider the complex functions: $e^{+i n \pi x / a}$ and $e^{-i n \pi x / a}$, where n is an integer and $\mathrm{i}=\sqrt{-1}$.
(i) Demonstrate that these two functions are degenerate function of kinetic energy operator.
(ii) Show that any linear combination of the complex functions, $e^{+i n \pi x / a}$ and $e^{-i n \pi x / a}$, is an eigen function of the kinetic energy operator. Determine the eigen value.
(d) Consider \widehat{A} to be a linear operator, such that $\widehat{A}^{n}=1$ (n is a positive integer). Assume no lower power of the operator equals to 1 . Find the eigenvalue of \widehat{A}.

3 (a) The energy of a particle of mass m in one-dimensional box of length I is measured. What are the possible values that can result from the measurement, if at the time of the measurement begins, the particle's state function is:
(i) $\psi=\left(\frac{30}{l^{5}}\right)^{1 / 2} x(l-x)$ for $0 \leq x \leq l$ and (ii) $\psi=\left(\frac{2}{l}\right)^{1 / 2} \sin \left(\frac{3 \pi x}{l}\right)$ for $0 \leq x \leq l$
(b) What would be the form of the time-dependent wavefunction for the particle which is having state function as represented in Part (ii) of previous question, i.e.
$\psi=\left(\frac{2}{l}\right)^{1 / 2} \sin \left(\frac{3 \pi x}{l}\right)$ for $0 \leq x \leq l$
(i) Does the time-dependent wavefunction represent stationary state of the system?
(ii) Is it an eigen function of the momentum operator?
(iii) Is it an eigen function of the $\widehat{p_{x}^{2}}$ operator?
(iv) If the time-dependent wavefunction is an eigen function of the momentum or $\widehat{p_{x}^{2}}$ operator, determine the eigen value(s).
(c) Show that in a rectangular box with sides $L_{1}=L$ and $L_{2}=2 L$, there is an accidental degeneracy between the states ($n_{x}=1$ and $n_{y}=4$) and ($n_{x}=2, n_{y}=2$).
(d) A crude treatment of the π-electron of a conjugated molecule regards these electrons as moving in a box of infinite potential wall - where the box length is somewhat more than the length of the conjugated chain. Consider Pauli exclusion principle. For, butadiene $\mathrm{CH}_{2}=\mathrm{CH}-$ $\mathrm{CH}=\mathrm{CH}_{2}$, consider the box length as $7.0 \AA$. Use particle in a box model to estimate the wavelength of light absorbed when a π-electron is excited from the highest-occupied to lowestvacant box level.

4 (a) Determine the value of average momentum of a harmonic oscillator of mass m in one dimension. You may consider that the oscillator is in state n (vibrational quantum number) having wavefunction Ψ_{n}.
(b) Lowering (\hat{a}) and raising (\hat{a}^{+}) operators are defined as, $\hat{a}=\frac{i}{2}(p-i x)$ and $\hat{a}^{+}=\frac{1}{i \sqrt{2}}(p+i x)$. Consider an eigen state of simple harmonic oscillator which is having energy E_{n}. What would be the outcome, if \hat{a} and \hat{a}^{+}are applied separately to the eigen state having energy E_{n} ?
(c) The force constant of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ is $240 \mathrm{~N} \mathrm{~m}^{-1}$. Calculate the fundamental vibrational frequency (in cm^{-1}) and the zero point energy of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$.

5 (a) Consider the following hydrogen-atom orbital: $\psi=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(Z r / a_{0}\right) \exp \left(-Z r / 2 a_{0}\right) \sin \theta \cos \phi$ Answer the following questions:
(i) What would be outcome of the energy operator (\widehat{H}) ?
(ii) What would be the outcome of $\widehat{L_{z}}$ operator? Determine the probability of each outcome(s)
(b) Evaluate following integrals, where the functions are hydrogen like wavefunction:
i) $\int 2 p_{1} \widehat{L_{z}} 2 p_{1} d \tau$ and ii) $\int 3 p_{0} \widehat{L_{z}} 3 p_{0} d \tau$
(c) Show that hydrogen atom like wavefunction $2 p_{x}$ and $2 p_{1}$ are not orthogonal.
(d) Microwave spectrum of $\mathrm{H}^{35} \mathrm{Cl}$ consists of a series of equally spaced lines, separated by $6.26 \times 10^{11} \mathrm{~Hz}$. Calculate the bond length of $\mathrm{H}^{35} \mathrm{Cl}$. [Reduced mass of $\mathrm{H}^{35} \mathrm{Cl}$ is $1.61 \times 10^{-27} \mathrm{~kg}$]

