Useful information: h = 6.626×10^{-34} J s, mass of electron (m_e) = 9.109×10^{-31} kg, c = 2.998×10^8 m s⁻¹, 1 eV = 1.602×10^{-19} J, Charge of electron (e) = 1.602×10^{-19} C, k = 1.381×10^{-23} J k⁻¹, Constant in Wien's displacement law = 2.90×10^{-3} m K

- 1 (a) Calculate the de Broglie wavelength of an electron moving at a speed of 1×10^6 m s^{-1} . [2]
 - (b) Solar spectrum can be approximated as a black body with λ_{max} at around 500 nm. Estimate the [2] temperature of sun.
 - (c) When a metal (X) is irradiated with light, one finds a stopping potential of 1.83 V for λ = 300 nm [4+2+2] and 0.80 V for λ = 400 nm. Using this information answer the following:
 (i) Calculate the value of Planck's constant. (ii) Calculate threshold frequency. (iii) Calculate the work-function of the metal (X).
 - (d) An electron is confined to a linear region with a length of the same order as the diameter of an atom (~ 100 pm). Calculate the minimum uncertainties in it position and speed.
- 2 (a) A certain one-particle, one-dimensional system has wavefunction, $\Psi = ae^{-ibt}e^{-bmx^2/h}$, where [5] a and b are constants and m is the mass of the particle. Find the potential energy function, V, for this system.
 - **(b)** Evaluate $g = \widehat{A} f$ where $\widehat{A} = SQRT$ and $f = x^4$

Time: 90 minutes

- [1]
- (c) Consider the complex functions: $e^{+in\pi x/a}$ and $e^{-in\pi x/a}$, where n is an integer and $i = \sqrt{-1}$. [4+3] (i) Demonstrate that these two functions are degenerate function of kinetic energy operator. (ii) Show that any linear combination of the complex functions, $e^{+in\pi x/a}$ and $e^{-in\pi x/a}$, is an eigen function of the kinetic energy operator. Determine the eigen value.
- (d) Consider \widehat{A} to be a linear operator, such that $\widehat{A}^n = 1$ (n is a positive integer). Assume no lower [2] power of the operator equals to 1. Find the eigenvalue of \widehat{A} .
- **3 (a)** The energy of a particle of mass *m* in one-dimensional box of length I is measured. What are **[2+1]** the possible values that can result from the measurement, if at the time of the measurement begins, the particle's state function is:

(i)
$$\psi = \left(\frac{30}{l^5}\right)^{1/2} x(l-x) for \ 0 \le x \le l$$
 and (ii) $\psi = \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{3\pi x}{l}\right) for \ 0 \le x \le l$

(b) What would be the form of the time-dependent wavefunction for the particle which is having [5 × 2] state function as represented in Part (ii) of previous question, i.e.

$$\psi = \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{3\pi x}{l}\right) for \ 0 \le x \le l$$

(i) Does the time-dependent wavefunction represent stationary state of the system?

(ii) Is it an eigen function of the momentum operator?

(iii) Is it an eigen function of the $\widehat{p_x^2}$ operator?

(iv) If the time-dependent wavefunction is an eigen function of the momentum or $\widehat{p_x^2}$ operator, determine the eigen value(s).

(c) Show that in a rectangular box with sides $L_1 = L$ and $L_2 = 2L$, there is an accidental degeneracy [3] between the states ($n_x=1$ and $n_y=4$) and ($n_x=2$, $n_y=2$).

- (d) A crude treatment of the π -electron of a conjugated molecule regards these electrons as moving in a box of infinite potential wall where the box length is somewhat more than the length of the conjugated chain. Consider Pauli exclusion principle. For, butadiene CH₂=CH-CH=CH₂, consider the box length as 7.0 Å. Use particle in a box model to estimate the wavelength of light absorbed when a π -electron is excited from the highest-occupied to lowest-vacant box level.
- 4 (a) Determine the value of average momentum of a harmonic oscillator of mass m in one [3] dimension. You may consider that the oscillator is in state n (vibrational quantum number) having wavefunction Ψ_n .
 - (b) Lowering (\hat{a}) and raising (\hat{a}^{\dagger}) operators are defined as, $\hat{a} = \frac{i}{2}(p i x)$ and $\hat{a}^{\dagger} = \frac{1}{i\sqrt{2}}(p + i x)$. [3] Consider an eigen state of simple harmonic oscillator which is having energy E_n . What would be the outcome, if \hat{a} and \hat{a}^{\dagger} are applied separately to the eigen state having energy E_n ?
 - (c) The force constant of ⁷⁹Br⁷⁹Br is 240 N m⁻¹. Calculate the fundamental vibrational frequency (in [4] cm⁻¹) and the zero point energy of ⁷⁹Br⁷⁹Br.
- 5 (a) Consider the following hydrogen-atom orbital: $\psi = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} (Zr/a_0) \exp(-Zr/2a_0) \sin\theta \cos\phi$ [2+4] Answer the following questions: (i) What would be outcome of the energy operator (\hat{H})? (ii) What would be the outcome of $\hat{L_z}$ operator? Determine the probability of each outcome(s)
 - (b) Evaluate following integrals, where the functions are hydrogen like wavefunction: [4]

i) $\int 2p_1\widehat{L_z}2p_1\,d\tau$ and ii) $\int 3p_0\widehat{L_z}3p_0\,d\tau$

- (c) Show that hydrogen atom like wavefunction $2p_x$ and $2p_1$ are not orthogonal. [2]
- (d) Microwave spectrum of $H^{35}Cl$ consists of a series of equally spaced lines, separated by [3] 6.26×10^{11} Hz. Calculate the bond length of $H^{35}Cl$. [Reduced mass of $H^{35}Cl$ is 1.61×10^{-27} kg]

****** End ******