CHEM F213: Physical Chemistry-II

Date: October 12, 2023 Mid-semester Test (Closed Book)

General Instructions: 1. Write your name, ID no., Course No., Course Title, Date and Day legibly, correctly and completely on the main answer-sheet as well as on the supplement(s) (if any) used. 2. All the questions are compulsory. You may solve the questions in any order. However, solve all the sub-questions of a question before going to new question.3. Only scientific and non-programmable calculators may be used for numerical calculations. Use of mobile phones is strictly prohibited.

Useful data:
$$a_0 = \frac{4 \pi \varepsilon_0 \hbar^2}{m_e e^2}$$
; Standard integral: $\int_0^\infty x^n e^{-\beta x} dx = \frac{n!}{\beta^{n+1}}$

1. (a) The variable, ϕ , defines the angular position of a particle of mass, μ , confined to move in a circular orbit of the fixed radius, r.

(I) Evaluate $[\hat{\mathcal{L}}_{z}, \hat{\phi}]$.

(II) Find the product of minimum uncertainties in simultaneous measurements of the angular position and angular momentum of the particle in a given energy level. [5]

(b) A one-dimensional quantum harmonic oscillator of mass μ and the force constant, k, is found to be in a normalized state defined by $\Psi(x,t) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-(i\pi \nu t + \alpha x^2/2)}$, where, ν is the fundamental vibrational frequency and $\alpha = \frac{\sqrt{k\mu}}{\hbar}$.

(I) Is this a stationary state? Justify your answer mathematically in no more than four lines. Can you identify this state without action of any operator on it? [4]

(II) Find the total energy of the oscillator in the given state and also find the minimum displacement (in positive x-direction) so that the oscillator is found in the classically forbidden region. [4]

(III) Find the net probability current in the given state of the oscillator.

(c) Recall that for *s*-type orbitals, the orbital angular momentum is zero and the kinetic energy operator for a hydrogen atom takes the reduced form: $\hat{T}_e = -\frac{\hbar^2}{2m_e} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right)$. The normalized 1*s* orbital of this atom is expressed as $\psi_{1s} = \frac{e^{-r/a_0}}{(a_0^3 \pi)^{1/2}}$.

(I) Determine $\langle \hat{T}_e \rangle$ in the given state.

(II) Using the potential energy operator form: $\hat{U}(r) = -\frac{\hbar^2}{m_e a_0 r}$, determine $\langle \hat{U} \rangle$ in the given state. [4]

2. (a) Answer the questions based on the operators, $\hat{A} = \hbar \left[z \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) - (x + i y) \frac{\partial}{\partial z} \right]; \quad \hat{B} = \hbar \left[-z \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) + (x - i y) \frac{\partial}{\partial z} \right]; \text{ and the given function, } f(x, y, z) = z$.

(I) If $f_A = \hat{A}f(x, y, z)$; $f_B = \hat{B}f(x, y, z)$; $f_{BA} = \hat{B}\hat{A}f(x, y, z)$; $f_{AB} = \hat{A}\hat{B}f(x, y, z)$; then find f_A ; f_B ; f_{BA} and f_{AB} . (II) Using the same convention, find f_{AA} and f_{BB} . (II)

(III) Based on your observations in I and II, above, can you recognize the operators \hat{A} and \hat{B} ? Also identify the significance of the functions, f_A and f_B . [4]

(b) Suppose the trial function, $\tilde{\psi} = c_1 e^{-\alpha r} + c_2 e^{-\alpha r^2}$ were used to carry out variational calculation for the ground state of hydrogen atom and E_{min} was the lowest root of the energies obtained, then, without explicitly doing any calculation, guess the values of c_1 , c_2 and α corresponding to the energy, E_{min} . [6]

- (c) A two dimensional translation operator $\hat{T}_{a,b}$ is defined as $\hat{T}_{a,b}f(x,y)=f(x+a,y+b)$.
- (I) Is it a linear operator? Justify your answer mathematically.

(II) Define inverse of the operator.

(III) If $g(x,y) = \sin(x+y)$; then what choice(s) of c and d would give $\hat{T}_{c,d}g(x,y) = -g(x,y)$? [2]

Time: 90 minutes Max. Total Marks 60

[3]

[4]

[6]

[3]

[3]