CHEM F213: Physical Chemistry-II

Date: October 12, 2023

Time: 90 minutes
Mid-semester Test (Closed Book)
General Instructions: 1.Write your name, ID no., Course No., Course Title, Date and Day legibly, correctly and completely on the main answer-sheet as well as on the supplement(s) (if any) used. 2. All the questions are compulsory. You may solve the questions in any order. However, solve all the sub-questions of a question before going to new question.3. Only scientific and non-programmable calculators may be used for numerical calculations. Use of mobile phones is strictly prohibited.
Useful data: $\quad a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}} ;$ Standard integral: $\int_{0}^{\infty} x^{n} e^{-\beta x} d x=\frac{n!}{\beta^{n+1}}$

1. (a) The variable, ϕ, defines the angular position of a particle of mass, μ, confined to move in a circular orbit of the fixed radius, r.
(I) Evaluate $\left[\hat{L}_{z}, \hat{\phi}\right]$.
(II) Find the product of minimum uncertainties in simultaneous measurements of the angular position and angular momentum of the particle in a given energy level.
(b) A one-dimensional quantum harmonic oscillator of mass μ and the force constant, k, is found to be in a normalized state defined by $\Psi(x, t)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\left(i \pi v t+\alpha x^{2} / 2\right)}$, where, v is the fundamental vibrational frequency and $\alpha=\frac{\sqrt{k \mu}}{\hbar}$.
(I) Is this a stationary state? Justify your answer mathematically in no more than four lines. Can you identify this state without action of any operator on it?
(II) Find the total energy of the oscillator in the given state and also find the minimum displacement (in positive x-direction) so that the oscillator is found in the classically forbidden region.
(III) Find the net probability current in the given state of the oscillator.
(c) Recall that for s-type orbitals, the orbital angular momentum is zero and the kinetic energy operator for a hydrogen atom takes the reduced form: $\hat{T}_{e}=-\frac{\hbar^{2}}{2 m_{e}}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right)$. The normalized $1 s$ orbital of this atom is expressed as $\psi_{1 s}=\frac{e^{-r / a_{0}}}{\left(a_{0}^{3} \pi\right)^{1 / 2}}$.
(I) Determine $\left\langle\hat{T}_{e}\right\rangle$ in the given state.
(II) Using the potential energy operator form: $\hat{U}(r)=-\frac{\hbar^{2}}{m_{e} a_{0} r}$, determine $\langle\hat{U}\rangle$ in the given state.
2. (a) Answer the questions based on the operators, $\hat{A}=\hbar\left[z\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)-(x+i y) \frac{\partial}{\partial z}\right] ; \hat{B}=\hbar\left[-z\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)+(x-i y) \frac{\partial}{\partial z}\right]$; and the given function, $f(x, y, z)=z$.
(I) If $f_{A}=\hat{A} f(x, y, z) ; f_{B}=\hat{B} f(x, y, z) ; f_{B A}=\hat{B} \hat{A} f(x, y, z) ; f_{A B}=\hat{A} \hat{B} f(x, y, z)$; then find $f_{A} ; f_{B} ; f_{B A}$ and $f_{A B}$.
(II) Using the same convention, find $f_{A A}$ and $f_{B B}$.
(III) Based on your observations in I and II, above, can you recognize the operators \hat{A} and \hat{B} ? Also identify the significance of the functions, f_{A} and f_{B}.
(b) Suppose the trial function, $\widetilde{\psi}=c_{1} e^{-\alpha r}+c_{2} e^{-\alpha r^{2}}$ were used to carry out variational calculation for the ground state of hydrogen atom and $E_{\text {min }}$ was the lowest root of the energies obtained, then, without explicitly doing any calculation, guess the values of c_{1}, c_{2} and α corresponding to the energy, $E_{\text {min }}$.
(c) A two dimensional translation operator $\hat{T}_{a, b}$ is defined as $\hat{T}_{a, b} f(x, y)=f(x+a, y+b)$.
(I) Is it a linear operator? Justify your answer mathematically.
(II) Define inverse of the operator.
(III) If $g(x, y)=\sin (x+y)$; then what choice(s) of c and d would give $\hat{T}_{c, d} g(x, y)=-g(x, y)$?
