BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN)
 COMPREHENSIVE EXAMINATION, SEMESTER I (2016-17)

CHEM F214: Inorganic Chemistry 1 Close Book (Part A)
Marks: 30
Date: $5^{\text {th }}$ Dec., 2016

Time: Max. 1h 30min

Instructions:
I. All the questions are objective types
II. Answer all the questions at the main answer sheet which should be marked as Part A
III. Answer must be limited within 2-3 sentences only
IV. After submission of Part-A answerscript, Part-B question paper should be taken
V. The answer of Part-B question should be written in a separate answersheet which should be marked as Part B VI. Hand writing must be legible otherwise marks can be deducted

I. Answer all the questions within 2-3 sentences:
$15 \times 1=15 M$
(1) Draw the chemical structure of polythiazyl $\left[(S N)_{x}\right]$.
(2) How many nodal plane/s is/are present at the phosphazene ring based on Dewar model and show it/them.
(3) How many different molecular orbitals are formed via 'linear combination of atomic orbitals (LCAO)' in case of BHB bonding? What are those?
(4) In reaction with diborane, $\mathrm{Me}_{3} \mathrm{~N}$ results homolytic cleavage whereas NH_{3} undergoes heterolytic cleavage reaction. What are the products formed in each case (only chemical structures are required).
(5) There have been two theoretical arguments made against the participation of d-orbitals in non metals. Write down those arguments?
(6) $\mathrm{In} \mathrm{PbMo}_{6} \mathrm{~S}_{8}, \mathrm{Mo}_{6} \mathrm{~S}_{8}$ cube is rotated with respect to Pb lattice. How does such rotation arise?
(7) Draw the molecular orbital (MO) diagram of the following molecule, $\mathrm{Re}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}$ including filling up of electrons in the resulting MOs (energy scale of the orbitals should be taken arbitrarily).
(8) Write down the Born Lande equation of lattice energy.
(9) What is thermochemical radii?
(10) The boiling points of LiCl and LiI are observed to 845 and $449^{\circ} \mathrm{C}$, respectively. Explain it.
(11) Which are called F centre? Give example of it.
(12) $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{Me}_{3} \mathrm{CN}$ were treated with water separately. What products were expected? Explain it.
(13) Write down the half-cell reaction along with the Nernst equation where water acting as an oxidizing agent.
(14) Show the autoionization equilibrium present of POCl_{3} involving its characteristic cations and anions.
(15) Define donor number of aprotic solvent. Which solvent is expected to have higher donor number - toluene or acetone?
II. Fill in the blanks (Q.No.1-10) and write down the structure of A to H (Q.No. 11-15) (only write the appropriate answer on the answersheet) $15 \times(0.5 \times 2)=15 \mathrm{M}$
(1) The increasing effective nuclear charge on the central atom as a result of \qquad would result \qquad of the d orbitals.
(2) The metal Bi often found to stable at \qquad oxidation state which is because of \qquad -
(3) In strongly heating of LiOH results \qquad and \qquad , whereas mild heating of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ produces \qquad and
(4) In $\mathrm{Re}_{3} \mathrm{Cl}_{9}$, the number of $\mathrm{Re}-\mathrm{Re}$ bonds and the terminal $\mathrm{Re}-\mathrm{Cl}$ bonds remain \qquad and \qquad , respectively.
(5) \qquad closest packed system has XYZ stacking pattern whereas \qquad closest packed system has XYX stacking pattern.
(6) In CsCl structure the coordination number of chloride is \qquad whereas in ZnS (wurtzite) structure, the coordination number of S is \qquad —.
(7) In defect where the missing ion has been dislocated to a nearby \qquad position is called the \qquad defect.
(8) The charge coefficient measures the rate of change of \qquad with charge and the second derivative of
\qquad with respect to charge.
(9) Mulliken-Jaffe definition of electronegativity for various hybridizations involves the computation of \qquad and \ldots ___ by adjusting for the promotion energy from the ground state.
(10) An Ellingham diagram summarizes the \qquad dependence of the standard Gibbs energies of formation of metal oxides and is used to identify the \qquad at which reduction by carbon or carbon monoxide becomes spontaneous.
(11) In Frost diagram, the reducing agent of the couple with the \qquad positive slope is liable to undergo \qquad .
(12)

$$
\mathrm{SbCl}_{5}+\mathrm{AlCl}_{3} \xrightarrow{\mathrm{POCl}_{3}} \mathrm{~A}+\mathrm{B}
$$

(13) $\mathrm{NaH}+\mathrm{NH}_{3} \rightarrow \mathrm{C}+\mathrm{D}$
(14) $\left(\mathrm{BrF}_{2}\right)_{2} \mathrm{SnF}_{6}+2 \mathrm{KBrF}_{4} \rightarrow \mathrm{E}+\mathrm{F}$
(15) $\mathrm{KNH}_{2}+\mathrm{NH}_{4} \mathrm{I} \rightarrow \mathrm{G}+\mathrm{H}$

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILAN (RAJASTHAN)
 COMPREHENSIVE EXAMINATION, SEMESTER I (2016-17)
 CHEM F214: Inorganic Chemistry I Open Book (Part B) Marks: 50
 Time: 1h 30min
 Date: $5^{\text {th }}$ Dec., 2016

Instructions:

I. Answer all the questions
II. Answer all the parts of a particular question together
III. Any inorganic chemistry book is allowed, but no solution manual
IV. Hand writing must be legible otherwise marks can be deducted

Q1(a) Classify the following molecules as nido /closo /or arachno boranes with proper justification:
(i) $\mathrm{C}_{3} \mathrm{~B}_{5} \mathrm{H}_{7}$; (ii) $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (ii) $\mathrm{NCB}_{10} \mathrm{H}_{11}$
(b) Determine the total number of electrons and the number of framework electrons present in each of the above species. (c) How many vertices are present in each of the cases? (d) The structural framework of two borane clusters is given below. What type of boranes are these?

(e) Discuss the stability of cyclic $\left(\mathrm{PNBr}_{2}\right)_{3}$ vs cyclic $\left(\mathrm{PNBr}_{2}\right)_{4}$ in the light of Craig and Paddock model.

$$
3+3+1.5+2+3.5=13 \mathrm{M}
$$

Q2(a) In the following structure of phosphazene, in case 1: Q1 $=\mathrm{Q} 2=\mathrm{F}$ and case 2: $\mathrm{Q} 1=$ ethyl and $\mathrm{Q} 2=$ F. In these two cases, what structural differences would be observed, and why such differences are observed.

(b) In the following two compounds, $\mathrm{Cl}_{2} \mathrm{FPO}$ and $\mathrm{MeEt}_{2} \mathrm{PO}$, in which case the $\mathrm{P}-\mathrm{O}$ IR stretching frequency is expected to be more and why? (c) In the following compounds, $\mathrm{Ph}_{3} \mathrm{NO}$ and $\mathrm{Ph}_{3} \mathrm{PO}$ which is expected to be more basic and why? (d) Out of the following species, $\mathrm{Me}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2}{ }^{-}$and $\mathrm{Me}_{3} \mathrm{P}^{+} \mathrm{CH}_{2}^{-}$which one is expected to be more stable and why? (e) CCl_{4} is stable whereas PbCl_{4} is a powerful oxidizing agent. Why? (f) The S-S distance in S_{2}, the major component of S vapor above $\sim 72^{\circ} \mathrm{C}$, is 189 pm , significantly shorter than the S -S distance of 206 pm in S_{8}. Suggest an explanation for the shorter distance in S_{2}.

$$
2+2+2+2+1+2=11 \mathrm{M}
$$

Q3. (a) For the case of $\mathrm{Na}_{2} \mathrm{Tc}_{2} \mathrm{Cl}_{8}$ molecule, $\mathrm{Tc}-\mathrm{Tc}$ bond length was found to be exceptionally shorter. Why the bond length of Tc-Tc is found to be so short? Describe the detail bonding of the molecule. (b) Which are called naked clusters and why? Give examples and draw the structure of it. (c) Use Born Haber cycle to calculate the enthalpy of formation of MgO , which is assumed to crystallizes in NaCl structure (Bond
energy of $\mathrm{O}_{2}=247 \mathrm{kJmol}^{-1} ; \Delta \mathrm{H}$ (sublimation, Mg) $=37 \mathrm{kJmol}^{-1}$; Internuclear distance of $\mathrm{MgO}(\mathrm{r})=212$ pm)

$$
4+3+6=13 M
$$

Q4. (a) Bartlett's original reaction of xenon with PtF_{6} apparently yielded products other than the expected $\mathrm{Xe}^{+} \mathrm{PtF}_{6}{ }^{-}$. However, when xenon and PtF_{6} are reacted in the presence of a large excess of $\mathrm{SF}_{6}, \mathrm{Xe}^{+} \mathrm{PtF}_{6}{ }^{-}$is apparently formed. Suggest the function of SF_{6} in this reaction. (b) On the basis of VSEPR, predict the structure with drawing the appropriate geometry: (i) XeOF_{2}; (ii) $\mathrm{PCl}_{3} \mathrm{Br}_{2}$; (iii) $\mathrm{TeF}_{4}{ }^{2-}$; (c) From the following Latimer diagram, calculate the value of E° for the reaction $2 \mathrm{HO}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$. Comment on the thermodynamic tendency of HO_{2} to undergo disproportionation.

$$
\mathrm{O}_{2} \xrightarrow{-0.125 \mathrm{v}} \mathrm{HO}_{2} \xrightarrow{+1.51 \mathrm{~V}} \mathrm{H}_{2} \mathrm{O}_{2}
$$

(d) Arrange the following compounds in decreasing order of acidity with explanation: $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$ and BBr_{3}. (e) Calculate the enthalpy of adduct formation predicted by Drago's E, C equation for the reactions of I_{2} with each of dietyl ether and dimethyl sulfide.

$$
2+3+4+2+2=13 M
$$

-END-

