# Birla Institute of Technology and Science, Pilani (Rajasthan) 

First Semester (2022-23), $1^{\text {st }}$ November, 2022
Mid-Semester Test (Closed Book)
CHEM F214: Inorganic Chemistry I

## Marks: 55

Time: 90 min

Instruction to the students: There are 5 questions in all. Attempt all the questions. Answer all parts of the question together.

Q1. Predict and explain the products for the following reactions based on the concept of electronegativity:
(i) $\mathrm{CH}_{3} \mathrm{I}+\mathrm{Na}^{+}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-} \rightarrow$
(ii) $\mathrm{CF}_{3} \mathrm{I}+\mathrm{Na}^{+}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-} \rightarrow$
(b) Draw the qualitative curves of Ionization energy-electron affinity of oxygen and fluorine against their oxidation states and justify the nature of the plot
(c) Find out the $\mathrm{pK}_{\mathrm{a}}$ of chloric and perchloric acids where the electronegativity of Cl is 3.16 .

Q2. (a) Applying Drago's concept of systematics of Lewis acid-base interactions, calculate $\Delta \mathrm{H}$ (in kcal $\left.\mathrm{mol}^{-1}\right)$ (enthalpy of formation of Lewis acid-base adduct of Phenol ( $\mathrm{E}_{\mathrm{A}}=2.27, \mathrm{C}_{\mathrm{A}}=1.07$ ) and pyridine $\left(\mathrm{E}_{\mathrm{B}}=1.78, \mathrm{C}_{\mathrm{B}}=3.54\right)$. Which type of interaction is prevalent in the adduct?
(b) Using acid-base theory, predict whether the following reactions have equilibrium constants greater or less than 1. Provide the justifications
(i) $\mathrm{CuI}_{2}+2 \mathrm{CuF}$
(ii) $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{HgSO}_{3}{ }^{-}$
(c) According to Irving-Williams series, the order of the stability constant of the complexes of few divalent metal ions with bidentate ligands is as follows: $\mathrm{Mn}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Co}^{2+}<\mathrm{Cu}^{2+}>\mathrm{Zn}^{2+}$. What does it indicate (Hint: Apply the acid-base concept)? If, this above mentioned order is associated with higher stability constants when ligand is $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ as compared to the ligand ${ }^{-} \mathrm{OOC}-\mathrm{COO}^{-}$, what would be your comment?

Q3. (a) Write down the order of basicity for the series of the bases comprising of trimethylamine, triethylamine and tripropylamine using the concept of 'B-strain'. Comment on their basicity based on theory of solvation.
(b) A small piece of metal when placed in liquid $\mathrm{NH}_{3}$, an intense blue colored solution is produced. This observation is independent of the metal chosen. What is the reason behind the observation?
(c) Justify whether followings are acidic or basic, or amphoteric in solvent $\mathbf{P O C l}_{3}$ with the mention of the species formed
(i) $\mathrm{SbCl}_{5}$
(ii) $\mathrm{AlCl}_{3}+\mathrm{KCl}$

Q4. (a) Complete the following and mention the most stable oxidation state with proper justification.

(b) Find out the symmetry elements and the point group of the following molecules:
(i) $\mathrm{SF}_{5} \mathrm{Cl}$ (ii) trans- $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$

Q5. (a) With the light of VSEPR theory, draw the Lewis structure and find out the structures of the following molecules with the mention of hybridization.
(i) $\mathrm{XeF}_{6}$ (At. No: of $\mathrm{Xe}=54$ ) and also justify the structure based on the fact that $\mathrm{XeF}_{5}{ }^{+}$is formed very easily from $\mathrm{XeF}_{6}$ (ii) $\mathrm{PbCl}_{2}$ (At. No: of $\mathrm{Pb}=82$ ).
(b) In case of $\mathrm{B}_{2} \mathrm{O}_{3}$, coordination number of 3 is observed. Find out the limiting value of $\mathrm{r}_{\mathrm{c}} / \mathrm{r}_{\mathrm{a}}$ where, $\mathrm{r}_{\mathrm{c}}$, $\mathrm{r}_{\mathrm{a}}=$ radius of the cation and anion respectively.
(c) How do $\mathrm{Hg}^{2+}$ and $\mathrm{Ca}^{2+}$ ions have approximately same ionic radii? Mention the nature of the bonding these cations prefer.
(d) (i) Use the Born-Haber cycle to calculate the enthalpy of formation of KBr , which crystallizes with the Rock salt structure. Use these data in the calculation: $\Delta \mathrm{H}_{\text {vap }}\left(\mathrm{Br}_{2}\right)=298 \mathrm{kJmol}^{-1} ; \mathrm{Br}_{2}$ bond energy $=$ $190.2 \mathrm{kJmol}^{-1}$; EA of bromine $=-324.7 \mathrm{kJmol}^{-1}$ and $\Delta \mathrm{H}_{\text {sub }}(\mathrm{K})=81.3 \mathrm{kJmol}^{-1}$; Madelung constant $=$ 1.748; ionization energy of $\mathrm{K}=418.8 \mathrm{kJmol}^{-1} ; \mathrm{r}_{\mathrm{K}+}+\mathrm{r}_{\mathrm{Br}-}=334 \mathrm{pm}$; Born exponent $=11.13 ; \varepsilon_{0}=8.854188$ $\times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$; e $=1.60218 \times 10^{-19} \mathrm{C}$.
(ii) Why is the Madelung constant represented as a converging series?

