Birla Institute of Technology and Science, Pilani (Rajasthan) First Semester (2022-23), 1st November, 2022 Mid-Semester Test (Closed Book) **CHEM F214: Inorganic Chemistry I**

Marks: 55

Time: 90 min

Instruction to the students: There are 5 questions in all. Attempt all the questions. Answer all parts of the question together.

Q1. Predict and explain the products for the following reactions based on the concept of electronegativity: (i) $CH_3I + Na^+[Mn(CO)_5]^- \rightarrow$ (ii) $CF_3I + Na^+[Mn(CO)_5]^- \rightarrow$ [2+3]

(b) Draw the qualitative curves of Ionization energy-electron affinity of oxygen and fluorine against their oxidation states and justify the nature of the plot [3]

(c) Find out the pK_a of chloric and perchloric acids where the electronegativity of Cl is 3.16. [2]

Q2. (a) Applying Drago's concept of systematics of Lewis acid-base interactions, calculate ΔH (in kcal mol⁻¹) (enthalpy of formation of Lewis acid-base adduct of Phenol ($E_A = 2.27$, $C_A = 1.07$) and pyridine $(E_B = 1.78, C_B = 3.54)$. Which type of interaction is prevalent in the adduct? [2+1]

(b) Using acid-base theory, predict whether the following reactions have equilibrium constants greater or less than 1. Provide the justifications [4]

(i) $CuI_2 + 2CuF$ (ii) $OH^{-} + CH_{3}HgSO_{3}^{-}$

(c) According to Irving-Williams series, the order of the stability constant of the complexes of few divalent metal ions with bidentate ligands is as follows: $Mn^{2+} < Fe^{2+} < Co^{2+} < Cu^{2+} > Zn^{2+}$. What does it indicate (Hint: Apply the acid-base concept)? If, this above mentioned order is associated with higher stability constants when ligand is $H_2NCH_2CH_2NH_2$ as compared to the ligand $-OOC-COO^-$, what would be your comment? [2+1]

Q3. (a) Write down the order of basicity for the series of the bases comprising of trimethylamine, triethylamine and tripropylamine using the concept of 'B-strain'. Comment on their basicity based on theory of solvation. [4]

(b) A small piece of metal when placed in liquid NH₃, an intense blue colored solution is produced. This observation is independent of the metal chosen. What is the reason behind the observation? [2]

(c) Justify whether followings are acidic or basic, or amphoteric in solvent POCl₃ with the mention of the species formed (i) SbCl₅ (ii) $AlCl_3 + KCl$ [2+2]

Q4. (a) Complete the following and mention the most stable oxidation state with proper justification.

(b) Find out the symmetry elements and the point group of the following molecules:
(i) SF₅Cl (ii) *trans*-C₂H₂Cl₂ [3+3]

Q5. (a) With the light of VSEPR theory, draw the Lewis structure and find out the structures of the following molecules with the mention of hybridization.

(i) XeF_6 (At. No: of Xe = 54) and also justify the structure based on the fact that XeF_5^+ is formed very easily from XeF_6 (ii) $PbCl_2$ (At. No: of Pb = 82). [3+2]

(b) In case of B_2O_3 , coordination number of 3 is observed. Find out the limiting value of r_c/r_a where, r_c , $r_a = radius$ of the cation and anion respectively. [2]

(c) How do Hg^{2+} and Ca^{2+} ions have approximately same ionic radii? Mention the nature of the bonding these cations prefer. [2+1]

(d) (i) Use the Born-Haber cycle to calculate the enthalpy of formation of KBr, which crystallizes with the Rock salt structure. Use these data in the calculation: $\Delta H_{vap}(Br_2) = 298 \text{ kJmol}^{-1}$; Br₂ bond energy = 190.2 kJmol⁻¹; EA of bromine = -324.7 kJmol⁻¹ and ΔH_{sub} (K) = 81.3 kJmol⁻¹; Madelung constant = 1.748; ionization energy of K = 418.8kJmol⁻¹; $r_{K+} + r_{Br-} = 334pm$; Born exponent = 11.13; $\epsilon_0 = 8.854188 \text{ x } 10^{-12}\text{C}^2\text{J}^{-1}\text{m}^{-1}$; $e = 1.60218 \text{ x } 10^{-19}\text{C}$.

[4+1]

(ii) Why is the Madelung constant represented as a converging series?