Birla Institute of Technology and Science, Pilani (Rajasthan)
 First Semester 2023-24, 20 ${ }^{\text {th }}$ December, 2023

 Comprehensive Examination (Open Book) Part -II

 Comprehensive Examination (Open Book) Part -II
 CHEM F214; Inorganic Chemistry I

Time: 2 hours 20 Mins
Max. Marks: 56
Q.1(a) Arrange the following compounds according to the increasing order of lattice energy and explain: CaO , $\mathrm{LiCl}, \mathrm{KBr}, \mathrm{KCl}$.
[1+3]
(b) pK_{a} of $\mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}$ and HF are $-10,-9,-7,3$ respectively. Provide the reason behind the trend observed for acidity. To differentiate the acids like $\mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}$, which solvent is better, $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{COOH}$ and why? [2+2] (c) In which complex ion amongst $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, the ionic radius of Co^{3+} is higher? Justify your answer.
(d) Write down the balanced reduction reaction of O_{2} in aqueous acid. Calculate the emf for this reaction when po2 $=0.2$ bar and $\mathrm{pH}=7\left(\mathrm{E}^{0}=1.229 \mathrm{~V} ; 2.303 \mathrm{RT} / \mathrm{F}=0.0591 \mathrm{~V}\right.$ at 298 K$)$
Q. 2 (a) $\mathrm{R}_{2} \mathrm{Sn}$ exists in dimeric form in solid state. The bond order between $\mathrm{Sn}-\mathrm{Sn}$ bond is 1.46. Comment on hybridization, hence on the structure of the compound with one-line justification.
$[1+1+1]$
(b) Orthocarbonic acid, $\mathrm{C}(\mathrm{OH})_{4}$ and orthonitric acid, $\mathrm{ON}(\mathrm{OH})_{3}$ are unknown rather $\mathrm{O}=\mathrm{C}(\mathrm{OH})_{2}$ and $\mathrm{O}_{2} \mathrm{~N}(\mathrm{OH})$ form, whereas orthosilicic acid $\mathrm{Si}(\mathrm{OH})_{4}$ forms. Why does such difference exist?
(c) The bond energies of $\mathrm{BrF}, \mathrm{BrF}_{3}$ and BrF_{5} follow the order as $\mathrm{BrF}>\mathrm{BrF}_{3}>\mathrm{BrF}_{5}$. Provide the justification. Why does not BrF_{7} form whereas IF_{7} is a stable compound?
[2+2]
(d) (i) Stilbite is a natural zeolite of formula $\mathrm{Na}_{4} \mathrm{Ca}_{8} \mathrm{Al}_{20} \mathrm{Si}_{52} \mathrm{O}_{144} \cdot 56 \mathrm{H}_{2} \mathrm{O}$. Can it be converted to $\mathrm{Ca}_{12} \mathrm{Al}_{12} \mathrm{Si}_{52} \mathrm{O}_{144.56 \mathrm{H}_{2} \mathrm{O} \text { ? Justify you answer. (ii) How can be any zeolite made more acidic in nature? } \quad[2+2]}$
Q. 3(a) From the perspective of structure and bonding, several polyhalides are analogous to $[\mathrm{py}-\mathrm{I}-\mathrm{Py}]^{+}$($\mathrm{py}=$ pyridine). Name such two polyhalides and describe their bonding with a help of MO diagram (consider only the valence orbitals of interest)
[1+3]
(b) Draw all of the structural isomers of $\mathrm{P}_{4} \mathrm{H}_{6}$. Assume that inversion at phosphorous is slow and draw all possible stereoisomers.
(c) Predict the products $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ of the following reactions.
$\left[\mathrm{CH}_{3} \mathrm{NH}_{3}\right] \mathrm{Cl}+\mathrm{BCl}_{3} \rightarrow \mathrm{~A}+\mathrm{B}$
$\mathrm{A}+\mathrm{CH}_{3} \mathrm{MgBr} \rightarrow \mathrm{C}$
(d) Find out the bond order of $\mathrm{Mo}-\mathrm{Mo}$ bond in $\mathrm{Mo}_{2}\left(\mathrm{MeCO}_{2}\right)_{4}$ complex. In the σ bonding between two Mo atoms which orbitals are in use and why?
[1+2]
Q.4(a) Compare the aromaticity of trimeric phosphazene, borazine with that of benzene and explain. Arrange them in the order of increasing aromaticity. In trimeric phosphazene, $\mathrm{P}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{6}$, justify the orbitals utilized in π bonding (in-plane) from N and P atoms with mention of the orbital utilized. Amongst in-plane and perpendicular π bonding, which one do you think stabilize the molecule more? Explain
[3+2+2]
(b) Consider a $\left[\mathrm{B}_{11} \mathrm{H}_{14}\right]^{-}$species. identify the number of framework electrons and $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonds. With the help
of Wade's rule, find out the its structure.
[1+1+2]
(c) Between infinite single chain of formula $\left[\mathrm{SiO}_{3}\right]_{\mathrm{n}}{ }^{2 \mathrm{nn}}$ and infinite double chain of formula $\left[\mathrm{Si}_{4} \mathrm{O}_{11}\right]_{\mathrm{n}}{ }^{6 n-}$ and a sheet or layer structure, $\left[\mathrm{Si}_{2} \mathrm{O}_{5}\right]_{\mathrm{n}}{ }^{2 \mathrm{n}-}$ what is fundamental difference in terms of the number of shared oxygen atoms?

