Birla Institute of Technology and Science, Pilani (Rajasthan) First Semester (2023-24), 14th October, 2023 Mid-Semester Test (Closed Book) CHEM F214: Inorganic Chemistry I

Marks: 60

Time: 90 min

<u>Instruction to the students</u>: There are **5** questions in all. Attempt all the questions. Answer all parts of the question together.

<u>Useful Data:</u> Electronegativity χ : $\chi_H = 2.1$; $\chi_C = 2.5$; $\chi_{Si} = 1.8$; I_2 ($E_A = 0.5$, $C_A = 2.00$); B(OCH₃)₃ ($E_A = 0.54$, $C_A = 1.22$); Me₂S ($E_B = 0.25$, $C_B = 3.75$); DMSO ($E_B = 2.40$, $C_B = 1.47$).

Q1. Silicon hydride reacts with the sources of protons to give molecular hydrogen whereas hydrocarbons do not. Explain the observation. If the bond energies of C-H, Si-H and H-H bonds are 413 kJ/mole, 160 kJ/mole and 436 kJ/mole respectively, calculate the bond energy of C-C bond. [2+3]

(b) Calculate the average bond energy of N-N bond from the following data: Total heat of atomization of N₂H₄ and N₂F₄ are 1703 kJ/mole and 1305 kJ/mole respectively Bond energies of N-H bond (assumed from NH₃) and N-F (assumed from NF₃) are 386 kJ/mole and 283.5 kJ/mole respectively.

(c) Me₃N, pyridine, acetonitrile (CH₃CN) have distinctly different basicity. In presence of water how do they behave and why are the differences observed? [4]

Q2. (a) Using acid-base theory, predict whether the following reactions have equilibrium constants greater or less than 1. Provide the justifications (i) $SO_2 + Ph_3P-HOCMe_3$ (ii) $[AgCl_2]^2 + 2 CN^2$ [3+2]

(b) Compare the strength of acidity with proper reasoning: (i) aqua ion of Na⁺ and Ag⁺ (ii) conjugate acids of ClO_4^- , PO_4^{3-} , SO_4^{2-} , SiO_4^{4-} . [2+3]

(c) Fluorosulphuric acid and antimony pertafluoride form superacid. Write down the reaction. [2]

Q3. (a) Compare the basicity of Me₂S and DMSO with respect to the acids I_2 and B(OCH₃)₃ by calculating the ΔH of the adduct formation. [5]

(b) Write down the reaction involved in each of the cases and comment on the comparative strength of the acids in the solvent, H_2SO_4 . (i) $HClO_4$ in H_2SO_4 (ii) $H_2S_2O_7$ in H_2SO_4 [3+1]

(c) Draw the structures of $HMnO_4$ and $HClO_4$ and justify their relative acid strength. [3]

Q4. (a) Draw the Frost diagram from the given Latimer diagram for Tl (Thallium) in aqueous acid mentioning the **axes** and **coordinates**. Which species is the strongest oxidant and How do justify it?

$$Tl^{3+} - Tl^{+} - Tl^{+} - Tl$$
 [3+2]

(b) In a figure show the C_2 and C_3 rotational axes of symmetry (one each) for a perfect octahedron. How many of such axes are present for each of the cases? (ii) Find out the principal axis of rotation present in octahedron. [2+1+1]

(c) Write down the balanced reaction of oxidation of H_2O by Fe^{2+} . If $E^0(Fe^{2+}/Fe) = -0.44V$, and $E^0(O_2/H_2O) = 1.23$ V, then comment on the spontaneity of the above mentioned reaction [3]

Q5. (a) Find out the point groups of *cis-planar* and *trans-planar* configurations of H_2O_2 by mentioning all the symmetry elements. [3]

(b) In which of the species ICl_4^- or SF_4 is the bond angle closest to that predicted by VSEPR by predicting the structures of these molecules? [4]

(c) Find out the minimum size of the tetrahedral hole in terms of the radius of anions. [3]

(d) What could be the plausible reason(s) for MgSO₄ (radius of Mg²⁺= 0.72 Å) to be more soluble in water than SrSO₄ (radius of Sr²⁺ = 1.16 Å)? [2]

***** END *****