Birla Institute of Technology \& Science, Pilani, Rajasthan
 2nd Semester, 2017-2018

CHEM F243 Organic Chemistry-II
Max. Marks: 40

Comprehensive Examination (Closed Book)
Time: 90 min
Date 10-05-2018

Q 1. (a) trans-3,4-Dimethylcyclobutene can open by two conrotatory paths to give either ($2 \mathrm{E}, 4 \mathrm{E}$)-hexa-2,4-diene or ($2 Z, 4 Z$)-hexa-2,4-diene. Explain why both products are symmetryallowed, and then account for the fact that only the $2 \mathrm{E}, 4 \mathrm{E}$ isomer is obtained in practice. 4
(b) What stereochemistry would you expect for the product of the Diels-Alder reaction between ($2 \mathrm{E}, 4 \mathrm{E}$)-hexa-2,4-diene and ethylene? What stereochemistry would you expect if ($2 \mathrm{E}, 4 \mathrm{Z}$)-hexa-2,4-diene were used instead?

Q 2.(a) Propose a mechanism to account for the fact that heating 1-deuterioindene scrambles the isotope to all three positions on the five-membered ring .

1-Deuterioindene
(b) With the help of symmetry properties of molecular orbitals of butadiene show why its disrotatory conversion to cyclobutene is a thermally forbidden process? Draw and indicate the symmetry properties of molecular orbitals of butadiene and cyclobutene.

Q3. Predict the major product (with stereochemical structure) for each of the following transformations.
(i)

(+)-DET
(iii)

(iv)

(v)

(vi)

Q 4. (a) Propose a method for achieving the following transformation

(b) Complete the synthesis of diastereomers ($\mathbf{X} \& \mathbf{Y}$) from aryl ketone \mathbf{M}

Birla Institute of Technology \& Science, Pilani, Rajasthan
 2nd Semester, 2017-2018

CHEM F243 Organic Chemistry-II
Comprehensive Examination (open Book)
Max. Marks: 40
Time: 90 min
Date 10-05-2018

Q1 (a) Find out the absolute configuration for each of the following.
(i)

$\mathrm{MeO}_{2} \mathrm{C}$
(ii)

(iii)

(b) Explain the relative rates observed for the anti-7-norbornenyl derivatives as given below.

4

1

13.3

relative rates of reaction (in dioxane/water at $140^{\circ} \mathrm{C}$
(c) Mechanistically explain the following rearrangements .

6
(i)

(ii)

Q 2. Classify each of the following transformations as an $[I, j]$ sigmatropic rearrangement.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Q 3. (a) Identify the pericyclic reactions involved in the synthesis of estrone, and propose a mechanism. 6

(b) Identify the product $\mathrm{X} \& \mathrm{Y}$ in the following enantioselective transformation.

