Thursday, May 11, 2017
Comprehensive Examination
Maximum Marks for Part I: 60 out of 120
Part I: Closed-book Quiz
Instructions: This examination has two parts. This part, (Part I) is a closed-book. Part II is open-book. Part I is to be solved on the question paper only. No supplements will be provided for solving Part I. Part I is having 20 questions over three pages.
Name:
ID:
Marks obtained

1. A HF calculation for LiH^{2+} is carried out with minimal basis function and with $6-31 \mathrm{G}^{*}$ basis set. How the nuclear repulsion energy and number of occupied orbital will vary?

Nuclear repulsion energy: \qquad
Number of occupied orbital: \qquad
2. A particle is subject to the potential energy $V=a x^{5}+b y^{5}+c z^{5}$. If the ground state energy of the particle is 10 eV , calculate,
(i) $<$ T $>=$ \qquad eV and $<\mathrm{V}>=$ \qquad eV
3. Determine $<x^{2}>$ for one-dimensional simple harmonic oscillator in terms of v, v, h, and k.
[$\mathrm{v}=$ vibrational quantum no., $\mathrm{v}=$ frequency, $\mathrm{h}=$ Planck's constant, $\mathrm{k}=$ force constant]
$\left\langle\mathrm{X}^{2}\right\rangle=$ \qquad
4. Fill in the blanks
(i) The permanent dipole moment of a many electron atom in a stationary state is always \qquad
(ii) Under Møller-Plesset perturbation theory: $E_{0}^{(0)}+E_{0}^{(1)}=$ \qquad
5. The gross populations (N) of the basis functions on each atom of $\mathrm{H}_{2} \mathrm{O}$ are, $N_{O}=(2.00+1.83+2+1.12+1.50), N_{H I}$ $=0.77=N_{H 2}$. Calculate the net charges on O -atom $\left(\mathrm{q}_{\mathrm{o}}\right)$ and H -atom $\left(\mathrm{q}_{\mathrm{H}}\right)$.
$\mathrm{q}_{\mathrm{o}}=$ \qquad and $q_{H}=$ \qquad
6. Time dependent expansion coefficients $\left[\mathbf{b}_{\mathbf{m}}\left(\mathbf{t}^{\prime}\right)\right]$ for a transition from stationary state \mathbf{m} to stationary state \mathbf{n} are obtained using time dependent perturbation theory to describe the interaction of radiation and matter. The expression is,

$$
b_{m}\left(t^{\prime}\right) \approx \delta_{m n}+\frac{\mathscr{E}_{0}}{2 \hbar i}\left\langle\psi_{m}^{0}\right| \sum_{i} Q_{i} x_{i}\left|\psi_{n}^{0}\right\rangle\left[\frac{e^{i\left(\omega_{m n}+\omega\right) t^{\prime}}-1}{\omega_{m n}+\omega}-\frac{e^{i\left(\omega_{m n}-\omega\right) t^{\prime}}-1}{\omega_{m n}-\omega}\right]
$$

In which $\omega \equiv 2 \pi \nu$ and $\omega_{m n}=\left(\mathrm{E}_{0}^{\mathrm{m}}-\mathrm{E}_{0}^{\mathrm{n}}\right) / \hbar$
Using the above expression describe the situation for,
Induced absorption: \qquad
Induced emission: \qquad
7. Write down the expression of the one electron Fock operator for electron \boldsymbol{p} in a \boldsymbol{q} electron molecule which is having $\boldsymbol{\alpha}$ nuclei.
$\hat{f}(\mathrm{p})=$
8. State whether following statements are True or False [Write down True or False after the statement]
(i) Two external potentials $v_{a}\left(\mathrm{r}_{\mathrm{i}}\right)$ and $v_{b}\left(\mathrm{r}_{\mathrm{i}}\right)$ can give rise to the same ground-state electron density ρ_{0} \qquad
(ii) The spatial parts of the wave function of $\boldsymbol{H e}$ atom in the ground and lowest excited state are, antisymmetric and symmetric respectively.
(iii) First order energy correction obtained from non-degenerate perturbation theory treatment $\mathrm{E}^{(1)}=\left\langle\psi^{(0)}\right| \widehat{H^{\prime}}\left|\psi^{(0)}\right\rangle$ applies only to the ground state \qquad
(iv) For non-linear polyatomic molecules angular momentum classification of electronic terms can not be used as $\left[\widehat{L_{z}}, \widehat{H}\right]=0$
9. Express nuclear-electron attraction $\left(\overline{V_{n e}}\right)$ in terms of ground state electron density and external potential:
$\overline{V_{n e}}=$
10. Use the concepts of Møller-Plesset perturbation theory to answer the following questions for a molecular system of 3 electrons. Fock operators can be represented as \hat{f} (i), spin orbitals as $u(i)$ with an eigen value $\epsilon(i)$.
(i) Form of the unperturbed Hamiltonian $\left(\widehat{H^{0}}\right)=$ \qquad
(ii) Form of the zeroth order wavefunction $\left(\phi_{0}\right)=$ \qquad
(iii) Eigen value of the state represented in previous question, $\mathrm{E}^{(0)}=$ \qquad
11. Consider perturbation theory treatment of the ground state of $\boldsymbol{H e}$ atom. The first order energy correction can be written in terms of 1 s energy of the hydrogen atom as $\mathrm{E}^{\prime}=\left(-\frac{5}{8} \mathrm{z}\right) E_{l s}(\mathrm{H})$. Calculate the energy of the ground state of the $\boldsymbol{H e}$ atom using the first order correction term. $\left[E_{1 s}(\mathrm{H})=-13.6 \mathrm{eV}\right]$

Energy = \qquad .eV
12. Given that $D_{e}=4.75 \mathrm{eV}$ and $\mathrm{R}_{\mathrm{e}}=0.741 \AA$ for the ground electronic state of H_{2}. Find,
$\mathrm{U}\left(\mathrm{R}_{\mathrm{e}}\right)=$ \qquad . eV
$\left.<\mathrm{T}_{\mathrm{el}}\right\rangle_{\mathrm{Re}}=$ \qquad eV.
13. Consider an electronic state of $\mathrm{H}_{2} \mathrm{O}$ molecule with 2 unpaired electrons. and electronic wavefunction remain unchanged by all four symmetry operations.

Determine the molecular electronic term of $\mathrm{H}_{2} \mathrm{O}$ molecule: \qquad
14. Consider simple model system, H_{2}, in minimal basis molecular orbital treatment using linear combination of atomic orbitals. The bonding and anti-bonding molecular orbitals are represented by Ψ_{1} and Ψ_{2}. Represent all spin orbitals of H_{2} using molecular orbitals, Ψ_{1} and Ψ_{2}.
15. Represent HF approximated ground state wavefunction in terms of the spin orbitals obtained in Q14
$\Psi_{0}(\mathbf{1 , 2})=$ \qquad
16. Express correlation energy in terms of energy obtained through CI and HF methods:
$\mathrm{E}=$ \qquad
17. Assign point group to I_{3} :
(a)

(b) $\quad \mathrm{I} \xrightarrow{2.90 \AA} \mathrm{I} \xrightarrow{2.90 \AA} \mathrm{I}$ as in $\mathrm{As}^{+} \mathrm{I}_{3}-$

Point group:
18. The character of the matrix representing the effect of identity operation on the set of Cartesian displacement coordinates for $\mathrm{CO}_{3}{ }^{2-}$ is
19. In case of $\mathrm{H}_{2} \mathrm{O}$, the linear combination of the two hydrogen $1 \mathrm{~s} \mathrm{AOs}\left(\mathrm{H}_{1} 1 \mathrm{~s}+\mathrm{H}_{2}\right.$ 1s) belong to the symmetry species
20. (i) Determine all the symmetry elements in cis-hydroquinone (cis-1,4-dihydroxyphenol). (ii) How many classes are present in the point group to which the molecule belongs? Represent all those classes. (iii) Construct the character table. (iv) Assign Mulliken symbol to each of the representations.
[2+2+2+2]

Do not write any answer on this page

Thursday, May 11, 2017
Part I: Closed-book Quiz
Instructions: This examination has two parts. This part, (Part I) is a closed-book. Part II is open-book. Part I is to be solved on the question paper only. No supplements will be provided for solving Part I. Part I is having 20 questions over three pages.
Name:
ID: \qquad Marks obtained \qquad

1. Use the concepts of Møller-Plesset perturbation theory to answer the following questions for a molecular system of 3 electrons. Fock operators can be represented as \hat{f} (i), spin orbitals as u(i) with an eigen value $\epsilon(i)$.
(i) Form of the unperturbed Hamiltonian $\left(\widehat{H^{0}}\right)=$ \qquad
(ii) Form of the zeroth order wavefunction $\left(\phi_{0}\right)=$ \qquad
(iii) Eigen value of the state represented in previous question, $\mathrm{E}^{(0)}=$ \qquad
2. A particle is subject to the potential energy $V=a x^{5}+b y^{5}+c z^{5}$. If the ground state energy of the particle is 10 eV , calculate,
(i) $<\mathrm{T}\rangle=$ \qquad eV and $<\mathrm{V}>=$ \qquad eV
3. Determine $<\mathrm{x}^{2}>$ for one-dimensional simple harmonic oscillator in terms of $\mathrm{v}, \mathrm{v}, \mathrm{h}, \mathrm{and} \mathrm{k}$.
[$\mathrm{v}=$ vibrational quantum no., $\mathrm{v}=$ frequency, $\mathrm{h}=$ Planck's constant, $\mathrm{k}=$ force constant]
$\left\langle x^{2}\right\rangle=$ \qquad
4. Fill in the blanks
(i) Under Møller-Plesset perturbation theory: $E_{0}^{(0)}+E_{0}^{(1)}=$ \qquad
(ii) The permanent dipole moment of a many electron atom in a stationary state is always \qquad
5. The gross populations (N) of the basis functions on each atom of $\mathrm{H}_{2} \mathrm{O}$ are, $N_{O}=(2.00+1.83+2+1.12+1.50), N_{H I}$ $=0.77=N_{H 2}$. Calculate the net charges on O -atom $\left(\mathrm{q}_{\mathrm{o}}\right)$ and H -atom $\left(\mathrm{q}_{\mathrm{H}}\right)$.

$$
\begin{equation*}
\mathrm{q}_{\mathrm{H}}= \tag{2}
\end{equation*}
$$

\qquad and $q_{o}=$ \qquad
6. Time dependent expansion coefficients $\left[\mathbf{b}_{\mathbf{m}}\left(\mathbf{t}^{\prime}\right)\right]$ for a transition from stationary state \mathbf{m} to stationary state \mathbf{n} are obtained using time dependent perturbation theory to describe the interaction of radiation and matter. The expression is,

$$
b_{m}\left(t^{\prime}\right) \approx \delta_{m n}+\frac{\mathscr{E}_{0}}{2 \hbar i}\left\langle\psi_{m}^{0}\right| \sum_{i} Q_{i} x_{i}\left|\psi_{n}^{0}\right\rangle\left\lceil\frac{e^{i\left(\omega_{m n}+\omega\right) t^{\prime}}-1}{\omega_{m n}+\omega}-\frac{e^{i\left(\omega_{m n}-\omega\right) t^{\prime}}-1}{\omega_{m n}-\omega}\right\rceil
$$

In which $\omega \equiv 2 \pi \nu$ and $\omega_{m n}=\left(\mathrm{E}_{0}^{\mathrm{m}}-\mathrm{E}_{0}^{\mathrm{n}}\right) / \hbar$
Using the above expression describe the situation for,
Induced absorption: \qquad

Induced emission: \qquad
7. Write down the expression of the one electron Fock operator for electron \boldsymbol{p} in a \boldsymbol{q} electron molecule which is having $\boldsymbol{\alpha}$ nuclei.
$\hat{f}(\mathrm{p})=$
8. State whether following statements are True or False [Write down True or False after the statement]
(i) First order energy correction obtained from non-degenerate perturbation theory treatment $\mathrm{E}^{(1)}=\left\langle\psi^{(0)}\right| \widehat{H^{\prime}}\left|\psi^{(0)}\right\rangle$ applies only to the ground state \qquad
(ii) The spatial parts of the wave function of $\boldsymbol{H e}$ atom in the ground and lowest excited state are, antisymmetric and symmetric respectively.
(iii) Two external potentials $v_{a}\left(\mathrm{r}_{\mathrm{i}}\right)$ and $v_{b}\left(\mathrm{r}_{\mathrm{i}}\right)$ can give rise to the same ground-state electron density ρ_{0} \qquad
(iv) For non-linear polyatomic molecules angular momentum classification of electronic terms can not be used as $\left[\widehat{L_{z}}, \widehat{H]}\right]=0$
9. Express nuclear-electron attraction $\left(\overline{V_{n e}}\right)$ in terms of ground state electron density and external potential:
$\overline{V_{n e}}=$
10. A HF calculation for LiH^{2+} is carried out with minimal basis function and with $6-31 \mathrm{G}^{*}$ basis set. How the nuclear repulsion energy and number of occupied orbital will vary?

Nuclear repulsion energy: \qquad
Number of occupied orbital: \qquad
11. Consider perturbation theory treatment of the ground state of $\boldsymbol{H e}$ atom. The first order energy correction can be written in terms of 1s energy of the hydrogen atom as $\mathrm{E}^{\prime}=\left(-\frac{5}{8} \mathrm{z}\right) E_{1 s}(\mathrm{H})$. Calculate the energy of the ground state of the $\boldsymbol{H e}$ atom using the first order correction term. $\left[E_{1 s}(\mathrm{H})=-13.6 \mathrm{eV}\right]$

Energy $=$ \qquad .eV
12. Given that $D_{e}=4.75 \mathrm{eV}$ and $R_{e}=0.741 \AA$ for the ground electronic state of H_{2}. Find,
$\mathrm{U}\left(\mathrm{R}_{\mathrm{e}}\right)=$ \qquad .eV
$\left.<\mathrm{T}_{\mathrm{e}}\right\rangle_{\mathrm{Re}}=$ \qquad eV.
13. Express correlation energy in terms of energy obtained through CI and HF methods:
$\mathrm{E}=$ \qquad
14. Consider simple model system, H_{2}, in minimal basis molecular orbital treatment using linear combination of atomic orbitals. The bonding and anti-bonding molecular orbitals are represented by Ψ_{1} and Ψ_{2}. Represent all spin orbitals of H_{2} using molecular orbitals, Ψ_{1} and Ψ_{2}.
15. Represent HF approximated ground state wavefunction in terms of the spin orbitals obtained in Q14
$\Psi_{0}(\mathbf{1 , 2})=$ \qquad
16. Consider an electronic state of $\mathrm{H}_{2} \mathrm{O}$ molecule with 2 unpaired electrons. and electronic wavefunction remain unchanged by all four symmetry operations.

Determine the molecular electronic term of $\mathrm{H}_{2} \mathrm{O}$ molecule: \qquad
17. Assign point group to I_{3} :
(a) $I \stackrel{2.90 \AA}{-} \stackrel{2.90 \AA}{ } \mathrm{I}$

Point group:

Point group:
18. In case of $\mathrm{H}_{2} \mathrm{O}$, the linear combination of the two hydrogen $1 \mathrm{~s} \mathrm{AOs}\left(\mathrm{H}_{1} 1 \mathrm{~s}+\mathrm{H}_{2}\right.$ 1s) belong to the symmetry species \qquad
19. The character of the matrix representing the effect of identity operation on the set of Cartesian displacement coordinates for $\mathrm{CO}_{3}{ }^{2-}$ is
20. (i) Determine all the symmetry elements in cis-hydroquinone (cis-1,4-dihydroxyphenol). (ii) How many classes are present in the point group to which the molecule belongs? Represent all those classes. (iii) Construct the character table. (iv) Assign Mulliken symbol to each of the representations.
$[2+2+2+2]$

Don't scribble on the question paper

Instructions: Irrelevant writing for a question would not be considered for evaluation and may lead to deduction of marks

1 Approximate drawings of the highest filled and lowest unfilled π-orbitals of pdisubstitutedbenzene, $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}_{2}$, where X is an atom ($\mathrm{p}-\mathrm{DSB}$, Figure 1). Shown are the upper lobes of the $C\left(2 p_{x}\right)$ orbitals which lie perpendicular to the plane of the molecule. Shaded and unshaded orbitals are of opposite sign.

A schematic representation of the S_{0} and S_{1} electronic potential wells of p-DSB showing the vibrational ground states and vibrational levels v_{7} and v_{8} (Figure 2). The transitions are designated as follows: a, $0-0 ; \mathrm{b}, 8_{0}^{1}$; c, 7_{0}^{1}; and d, 7_{1}^{0}. Ground state of p-DSB is ${ }^{1} \mathrm{~A}_{\mathrm{g}}$. Symmetry of the vibrational modes are represented in parentheses. Answer the following questions in brief.

i) Point group of p-DSB.
ii) Determine the Symmetry of S_{1} state.
iii) Is the spin-allowed pure electronic transition $S_{0} \rightarrow S_{1}$ of p-DSB orbitally allowed? Justify your answer with key points.
iv) Consider the vibronic transition 'a', i.e. 0-0 transition and comments on polarization in case this transition is allowed.
v) What about the vibronic transition ' b ', i.e 8_{0}^{1} if v_{8} has $b_{2 g}$ symmetry? Do mention the polarization in case the transition is allowed.
vi) Are the vibronic transitions 'c' $\left(7_{0}^{1}\right)$ and ' $\mathrm{d}^{\prime}\left(7_{1}^{0}\right)$ allowed? Do mention the polarization in case the transition is allowed.
vii) Can you identify transitions 'c' and 'd' in terms of fundamental, combination, and hot bands.
viii) How do you differentiate band 'c' and 'd' experimentally. You need to consider (Figure 2) that the transition energy of band 'c' and 'd' would be different. Thus, this is not the answer.

2 (a) Calculate the number of molecular orbitals for the given molecules and the basis sets:
[Tabulate you answer in the following way]

Molecule	Basis set	Number of molecular orbitals
LiH_{2}	$6-311 \mathrm{G}$	
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$6-31+\mathrm{G}$	
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	$6-31 \mathrm{G}^{* *}$	

(b) A HF calculation was carried out followed by Full CI for H_{2} molecule. 6-31G* basis set was used for this calculation. Only singlet spin states ($\mathrm{S}=0$) are used. Calculate,
i) the number of singly-excited configurations;
ii) the number of doubly-excited configurations; and
iii) the total number of configurations.
(c) NH_{3} molecule is perturbed by the application of an electric field in the x-direction. Which orbitals of N atom in NH_{3} molecule would mix with a d-orbital under this perturbation?
(d) Use time-independent perturbation theory to calculate an expression for the first order shift in the zero point energy of a one dimensional harmonic oscillator if the oscillator is perturbed by a small anharmonic term containing x^{4}.
(e) Expression of the integral $\left\langle\psi_{\mathrm{m}}{ }^{0}\right| \mathbf{Q x}\left|\psi_{\mathrm{n}}{ }^{0}\right\rangle$ for the particle in a one-dimensional box is: the particle in a one-dimensional box? Use this result to predict the lowest energy allowed transition in a three-dimensional box in terms of three quantum numbers, $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$, and n_{z}. $[\mathrm{a}, \mathrm{Q}$, and 1 are constants and having usual meanings]

