CHEM F244: Physical Chemistry - III

Tuesday, May 10, 2022 Comprehensive Examination	Par	Duration: 1 hour Maximum Total Marks: 32				
this part. Suggested duration for solv 1. Write your name and ID number is most correct answer. 3. You have to	ing this part is 1 hour. <i>n the space provided. 2. Ther</i> <i>CIRCLE the correct option</i> <i>wer carries 0 marks. 3.</i> Nor	e examination. The second part (open book) of re are 16 questions in this part with four opti with pen. Do not tick or cross or write the a n-programmable scientific calculators may rohibited.	ons each for the answers. Choose the unswer. Every correct answer carries			
Name:			Marks Obtained			
ID:	Invi	gilator's signature:				
1. Amongst the given groups, identif (a) I, II and III	y the non-cyclic one(s): (I) ((b) I, II and IV	C_{2h} ; (II) C_{3h} ; (III) C_4 ; (IV) C_5 (c) I and IV	(d) I only			
2. The order of the C_{5h} group and t (a) 6, 3	he number of classes are, resp (b) 6, 4	pectively equal to (c) 10 and 10	(d) 10 and 4			
3. In the context of Kohn-Sham DFT $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx$						
(a) $\Delta T[\rho] + \int v_{ex}(r)\rho(r)dr$	(b) $\Delta T[\rho] + \Delta V_{ee}$	(c) $\Delta T[\rho] + \Delta V_{ee} + \int v_{ex}(r)\rho(r)dr$	(d) ΔV_{ee} +J $v_{ex}(r)\rho(r)dr$			
4. In the context of the Thomas-Fern	ni model, $\phi(\vec{r})$ appearing in	the Euler-Lagrange equation, $\frac{\delta E_{TF}[\rho(\vec{r})]}{\delta \rho} =$	$=\frac{1}{2}(3\pi^2)^{2/3}\rho^{2/3}(\vec{r})-\phi(\vec{r})$ represents			
(a) electrostatic potential	(b) chemical potential	(c) exchange-correlation potential	(d) external potential			
5. In the context of Moller-Plesset potential $E_0^{(1)} = 0$	erturbation theory, which of t	the following the statements is/are NOT true	?:(I) $E_0^{(0)} + E_0^{(1)} = E_{HF}$; (II) $E_0^{(0)} = E_{HF}$			
(a) All of them	(b) I only	(c) II and III	(d) III only			
6. If $q_x = e(Z_x - N_x)$ is the net atom (a) gross population	nic charge on atom X , then(b) net population	N_x stands for (c) overlap population	(d) effective population			
(b) the correlation energy of the mole	tes into the fragments A and ecule approximately scales line ecule approximately scales line	nearly with the number of basis functions	(B)			
8. In cc-pVDZ basis set, the "cc" stat(a) correlation correction	nds for (b) correlated configuration	on (c) coulomb correlation	(d) correlation consistent			
9. For an H ₂ molecule in ground ele R_{eq} , then	ctronic state, if the internucle	ear distance, <i>R</i> is infinitesimally decreased	I from the equilibrium bond distance,			
(a) $T_e(R)$ increases	(b) $V_{el}(R)$ increases	(c) T_e decreases	(d) $U(R)$ decreases			
10. The great orthogonality theorem	reads $\sum_{p} [\Gamma_i(R_{mn})][\Gamma_i(R_{pq})]^{T}$	$=\frac{h}{\sqrt{l_i l_j}} \zeta$, where ζ is the product of three	Kronecker delta functions, as			
(a) $\delta_{ij}\delta_{mn}\delta_{pq}$	(b) $\delta_{ij}\delta_{mp}\delta_{nq}$	(c) $\delta_{ij}\delta_{mq}\delta_{np}$	(d) $\delta_{mn} \delta_{ip} \delta_{jq}$			
11. The only irreducible representation (a) E and C_2	ons of a group are A' and A". (b) E and i	The symmetry elements present in the group (c) S_4 and its powers	are (d) E and σ_s			
12. The number of normal modes of (a) 4	vibration of water correspond (b) 3	ding to completely symmetric irreducible rep (c) 2	resentations is (d) 1			
13. If $E_x = E_y + \sum_{i=1}^{n/2} H_{ii}^{core}$ and $E_y = \sum_{i=1}^{n/2} H_{ii}^{core}$	$\sum_{i=1}^{n/2} H_{ii}^{core} + \sum_{i=1}^{n/2} \sum_{j=1}^{n/2} \left(2 J_{ij} - K_{ij} \right) \text{ fo}$	or a closed-shell molecule, then				
(a) $E_{HF} = E_X + V_{NN}$ (b) E_{HF}	$_{HF} = E_Y + V_{NN}$ (c) E	$E_{HF} = \frac{E_X}{2} + V_{NN} \qquad (d) \ E_{HF} =$	$\frac{E_Y}{2} + V_{NN}$			
14. For neon atom, if an electronic st(a) core orbital split into 6 atomic or(c) the polarized d-subshell has 6 orbital split into 6 atomic or statement	ructure job is set up using 6-2 bitals (b) co	_	- rbitals			

15. According to degenerate perturbation theory where $\{\Psi_{i}^{(0)}; j=1, ..., n\}$ are degenerate zeroth-order wavefunctions, while solving $H(\lambda)\Psi_j(\lambda) = E_j(\lambda)\Psi_j(\lambda)$ as $\lambda \rightarrow 0$,

(a) Ψ_j tends to $\Psi_j^{(0)}$ and E_j tends to $E_j^{(0)}$. (c) Ψ_j may not tend to $\Psi_j^{(0)}$ but E_j tends to $E_j^{(0)}$.

- **(b)** Ψ_j tends to $\Psi_j^{(0)}$ but E_j may not tend to $E_j^{(0)}$ **(d)** Ψ_j may not tend to $\Psi_j^{(0)}$ and E_j may not tend to $E_j^{(0)}$

16. Which of the following statements are true about the irreducible representations of symmetry point groups?: (I) The most symmetric irreducible representation for a non-abelian point group can be degenerate. (II) There is at least one irreducible representation that is symmetric with respect to all the classes. (III) Irreducible representations of non-cyclic abelian point groups are necessarily unidimensional. (a) All of them (b) I and II (c) I and III (d) II and III

---END of Part I---

CHEM F244: Physical Chemistry - III

Tuesday, May 10, 2022								5				Duration: 2 hours						
Comprehensive Examination							Part-II (Open book)						Maximum Total Marks: 48					
A Restricted Hartree-Fock (RHF) energy computation job of water dimer using STO-6G basis set up on Q-Chem. The atoms were											ns were							
oriented as described by the following cartesian coordinates (in angstroms):																		
	Atom Symbol X Y No.			Z														
1		0	0.0000	0000	0.0000	0000	0.5567	556										
2				0.0000000														
3		Н	-0.783		0.0000	0000	0.0000	000										
4 0		0.0000		0.0000000		-0.5567556												
5		H	0.0000	0000	0.7830	366	0.0000	000										
6		H	0.0000	0000	-0.7830	0366	0.0000	000										
Upon	converg	gence of	the SCI	F iterati	ons, the A	AO-MO	coeffici	ent matr	ix was c	btained	as give	n below	•					
_	dex→	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
AO index ↓																		
1	$1s(O_1)$	0.7043	0.7045	-0.1551	-			-0.0645										
2	$2s(O_1)$	0.0130				0.0000	0.0000			0.0000	-0.8711		-0.6609	0.0000				
3	$2p_x(O_1)$	0.0000				-0.4539	0.0000		-0.7863	0.0000	0.0000	0.0000			0.0000			
4	$2p_y(O_1)$	0.0000				0.0000			0.0000	0.7863	0.0000	0.0000						
5	$2p_z(O_1)$	-0.0023			-	0.0000	0.0000		0.0000	0.0000	0.1154	0.0000		0.0000				
6	$1s(H_2)$	-0.0038					0.0000		0.0000	0.0000	0.5980	0.8316						
7	$1s(H_3)$	-0.0038	0.0000	0.0056		0.3113	0.0000		0.0000	0.0000	0.5980			1.0392				
8	$1s(O_4)$	0.7043						-0.0645	0.0000	0.0000	0.1085		-0.0808	0.0000				
9	$2s(O_4)$	0.0130				0.0000	0.0000		0.0000	0.0000	-0.8711	0.0000		0.0000				
10	$2p_x(O_4)$	0.0000					0.0000		0.7863	0.0000	0.0000							
11	$2p_y(O_4)$	0.0000				0.0000	-0.4539			-0.7863	0.0000	0.0000						
12	$2p_z(O_4)$	0.0023				0.0000	0.0000		0.0000	0.0000	-0.1154	0.0000		0.0000				
13	$1s(H_5)$	-0.0038					-0.3113		0.0000			-0.8316			-1.0392			
14 1s(H ₆) -0.0038 0.0000 0.0056 0.0000 0.3113 0.0779 0.0000 0.5980 -0.8316 0.0000 0.0000 1.0392]						
MO 1 2 3 4 5 6 7 8 9 10 11 12 13 14																		
MO	1		$\frac{2}{\sqrt{21}}$	3	4	5	<u>6</u>	7	8	9			11 201 (12	13	14		
Energ	y -20.	021 -20	0.621 -2	2.076	-1.093	-1.047	-1.047	-0.662	-0.404	4 -0.40	0.0	0.	391 (0.723	0.805	0.805		

Based on the given data, answer the following questions:

Q. 1 (a) Identify the symmetry elements (all distinct symmetry operations) in the (dimer) molecule and identify the point group. Is the point group abelian? Justify your answer in one line. [8+2]

[2]

(b) Identify the largest abelian subgroup of the point group in (a) above and find its order.

(c) Given that the basis functions (atomic orbitals), $\{\chi_r\}$ are normalized and the molecular orbitals, $\{\phi_i\}$ are orthonormal, express ϕ_4 , and ϕ_{11} in terms of the basis functions. Using the character table and without explicitly using the SALC algebra, identify the irreducible representations to which these orbitals belong. [4+6] [2]

(d) Identify the HOMO and LUMO (Specify the MO numbers and energies).

Q.2 (a) Evaluate the following elements of the density matrix: $P_{1,2}$, $P_{1,4}$, $P_{1,14}$, $P_{3,5}$ and $P_{5,6}$. [10] (b) Calculate the Mulliken population for the 1s orbital of the H₆ atom. [2]

(b) Calculate the Mulliken population for the 1s orbital of the H₆ atom. (c) Evaluate the following integrals for a closed-shell molecule: $\langle \Psi_i^a | H | \Psi_{HF} \rangle$, $\langle \Psi_{ij}^{ab} | H^{core} | \Psi_{HF} \rangle$, $\langle \Psi_{ijk}^{abc} | H | \Psi_{HF} \rangle$, and $\langle \Psi_i^a | \vec{\mu}_{el} | \Psi_{HF} \rangle$. [4]

(d) If RHF energies of hydrogen fluroide, water, ammonia and methane were computed using 3-21G** basis sets, calculate the number of basis functions produced of each molecule. If CISD correlation energies for these systems were computed, how many singly excited configurations would be generated using the spin-molecular orbitals? [4+4]

---END----

Page 3 of 2