Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 Semester-I, 2017-2018

CHEM F313 Instrumental Methods of Analysis

Comprehensive Examination (7th December 2017, Thursday)

PART I: (CLOSED BOOK)

Max. Marks: 20; Duration: 45 min

NOTE: 1. Q1 has negative marking. Each correct answer will carry 1 mark and each wrong answer will deduct 0.25 marks.

2. Write specific answers IN THE SPACE PROVIDED ONLY 3. SUBMIT PART I before proceeding to PART II		
Name: ID		
Q1.Pick the correct answer of the following questions	$(1\times10=10)$	
	ency and lower wavelength lency and higher wavelength	
(ii) For 2-methylpentane, the most abundant ion is expected to app (A) 43 (B) 71 (C) 57 (D) 29	ear at m/z	
(iii) To obtain γ-ray spectrum, target nucleus has to be bombarded (A) α particles (B) neutrons (C) electrons (C)	with D) positrons	
(iv) When a molecule absorbs energy to move to higher vibronic back to the lower excited state, this overall process could lead to (A) Raman scattering (B) pre-resonance Rama (C) emission of IR frequency (D) resonance scattering		
	fast neutrons to pass epithermal neutrons to pass	
 (vi) To obtain bond length of a molecule the most direct method is (A) electronic spectroscopy (B) vibrational spectroscopy (C) rotational spectroscopy (D) NMR spec 		
(vii) The resonance frequency for ^{31}P nuclei ($\gamma_N = 1.0841 \times 10^8$ T magnetic field is	s ⁻¹ s ⁻¹ when the nucleus spins in a 12 T	
(A) 320 MHz (B) 501 MHz (C) 480 MHz (D) 207 MHz	
(viii) In affinity chromatography, the stationary phase is made up w	vith glass beads attached with	
(A) polar molecule (B) complex molecule (C) ligand molecule	cule (D) chiral molecule	
(ix) Calcium oxalate monohydrate in TGA analysis shows three s lowest temperature, these three steps respectively correspond to the (A) CO, CO ₂ , H ₂ O (B) H ₂ O, CO ₂ , CO (C) CO, H ₂ O, CO	e loss of	
(x) An electron accelerated at 5000 V striking a Cu target will target (Cu, K_{α} = 1.542Å, K_{β} = 1.392 Å and L_{α} = 13.357 Å, 1eV= (A) K_{α} (B) none (C) K_{β}		

Q2. Show the CsU and B/U behavior observed in chromatography in a plot of 'contribution to H' vs U H = plate height, U = linear velocity, Cs = mass transfer coefficient, B = longitudinal diffusion coefficient,	
	(=)
Q3. In a reverse-phase HPLC technique for the separation of benzoic acid, benzene, chlorobenze	ene and
phenol provide the expected order of elution. What type of detector would be appropriate?.	(2+1)
Q4. Explain the most probable fragmentation of R ₂ CH ₂ CH ₂ CH ₂ COR ₁ .	(2)
O5 Eill in the Dlonker	
Q5. Fill in the Blanks: a. Fluorescence spectrum showsstructure ofstate of a molecule.	(2)
b. The sum of $(h^2 + k^2 + l^2) = 3,4,8,11,12,16$ indicate that the lattice is	(1)
	()