Birla Institute of Technology & Science, Pilani – K. K. Birla Goa Campus Second Semester, 2022–23		
	nination (Closed Book)	Total Marks: 70 Date: 10/05/2023 180 min
-	Marks, 120 min)	
Q1. (a) Explain the relationship between standard pote	ntial and formal potential of a redox cou	ıple? [3]
(b) Write the Levich equation of hydrodynamic voltammetry and explain all the terms.		[3]
(c) Explain the difference between the behavior of cyclic voltammograms of reversible and quasireversible processes on increasing the scan rates (with required diagrams).		sireversible [4]
(d) Explain in detail the technique isoelectric focusing.		[5]
(e) Explain the difference between the techniques hydrodynamic voltammetry and cyclic voltammetry.		nmetry. [5]
Q2. Identify True/False in the following statements.[6](i) Electrochemical capacitors work in GHz frequency range. (True/False)(ii) In battery electrode fabrication, PVDF is used to improve the electronic conductivity. (True/False)(iii) Low Tafel slope indicates high electroactivity (True/False)(iv) Specific capacitance of carbon electrodes can be improved if one modifies the carbon electrode with redox molecules. (True/False)(v) The electrochemical process can be made kinetically-controlled process rather than diffusion-controlled by recording voltammograms at very low scan rates. (True/False)(vi) During the discharging of the battery, chemical energy is converted into electrical energy. (True/False)		
Q3. Write the electrochemical reaction involving oxygelectrons transferred during this electrochemical reaction Q4. A fuel M of molar mass 200 g/mol is used as anodic	gen reduction reaction (ORR) to water? on?	Write the number of [3]
found to be 2.0 V. The energy density (in kWh/kg) of fu		cell voltage (E) is
(Note: Number of electrons involved during fuel oxidat	ion are 8; 1 F = 96500 C/mol)	[3]
Q5. Calculate the electrochemically active surface area (ECSA) in cm ² /mg of PtNi catalyst that yield a charge of 0.05 C during hydrogen desorption in 0.5 M H ₂ SO ₄ . Given the loading of the catalyst is 0.01 g. [3]		
Q6. Answer the following. [5] (i) Arrange the following in decreasing order of energy density (Wh/kg) Ni-Cd batteries, Lead-Acid batteries, Li-ion batteries (iii) Arrange the following in the decreasing order of power density (W/kg) Batteries, Fuel cells, Supercapacitors (iii) Write the expressions for the energy stored in a capacitor. (iv) What is the condition of good approximation in voltammetry that eliminates mass-transfer effects from the given options. (a) i < 10% of i⊥		
[nd	

Birla Institute of Technology & Science, Pilani – K. K. Birla Goa Campus Second Semester, 2022–23		
CHEM F327 Comprehensive Examination (Open Book) Electrochemistry: Fundamentals and Applications	Total Marks: 70 Date: 10/05/2023 180 min	
Part B (30 Marks, 60 min)		
Q1. Determine the theoretical specific capacity (in Ah/g) of TiO ₂ and LiFePO ₄ using the follo (i) $MO_2 + 0.5 \text{ Li}^+ + 0.5 \text{ e}^- \rightarrow \text{Li}_{0.5}MO_2$ (ii) $\text{LiMO}_4 \rightarrow \text{Li}_{0.5}MO_4 + + 0.5 \text{ Li}^+ + 0.5 \text{ e}^-$ Given molecular weight of MO_2 is 100 g/mol and LiMO ₄ is 175 g/mol.	owing reactions. [3+3=6]	
Q2. Write at least two ways of improving maximum energy stored in capacitors? Use su explain your answer.	uitable graphs/examples to [6]	
Q3. Answer the following. (i) Write the conditions in which you expect <i>good</i> tafel relationships? (ii) Write the condition and expression that relates charge-transfer resistance and exchange	[3+3=6] ge current density?	
Q4. Explain memory effect in batteries?	[6]	
Q5. Why electrochemical capacitors are termed as supercapacitors. What are ultracapac with suitable graphs.	citors? Explain your answer [6]	

 End-
