Birla Institute of Technology & Science-Pilani, K. K. Birla Goa Campus First Semester 2022-23 Course No & Course Title CHEM F333 , Chemistry of Materials Mid Semester Exam (Closed Book) Date: 01/11/22 Total Marks: 60 Time: 90 min Answer all the questions.

PART A

Important information: 1eV= 94.48 kj mol⁻¹, energy of free electron= 4.5 eV

	1 st ionization energy (kJ mol ⁻¹)	1 st Electron affinity energy (kJ mol ⁻¹)
Co	760	63.898
Fe	759	14.745
0	1313	140.976

1) Considering the band gap energy of $CoFe_2O_4$ is 1.38 eV, calculate the values of E_{VB} (the valence band edge potential) and E_{CB} (the conduction band edge potential) in eV unit. [6]

2) Draw a schematic diagram presenting a possible S-Scheme Mechanism for the formation of a hetero junction when two semiconductor nanoparticles "A" (having E_{VB} and E_{VB} = 1.71 and 0.91 eV respectively vs NHE) and "B" (having E_{VB} and E_{VB} = 1.57 and -1.13 eV, respectively vs NHE) come in contact and form a nanocomposite (in the diagram show all the three steps before contact, after contact, light irradiation). Will this nanocomposite can show water splitting reaction when irradiated by visible light at pH= 7? Give your answer only by (**Yes or No**) and show the Potential of H⁺/H₂ and Potential O₂/H₂O in the S scheme diagram. [8]

3) Draw a Schematic presentation showing different steps of nanoparticle preparation in a Gas phase reactor in different chambers of the reactor. [6]

Birla Institute of Technology & Science-Pilani, K. K. Birla Goa Campus
First Semester 2021-22, (Closed Book), PART B
COURSE TITLE: Chemistry of MaterialsCOURSE TITLE: Chemistry of MaterialsCOURSE NO: CHEM F333
Duration: 90 minTOTAL MARKS: 30Duration: 90 minDate: 1/11/22

		Answer all the parts of a question together. Marks will be awarded only for completely correct answers.			
Q1	Define fo (i) (ii)	llowing Coercivity Remanence	[4]		
Q2	(i) Which	type of superconductors show Vortex region? Explain what is a vortex region	n. [1+2]		
	(ii) Drav MnC	v the pictorial representation of magnetic domains in Copper metal, Magne	etite and [3]		
Q3	What is th (i) (ii)	he difference in the following Strength and Toughness Melting point and Glass transition temperature (Two differences)	[2+4]		
Q4	(i) (ii)	How stiffness of a polymer can be determined? Stiffness of an amorphous polymer decreases significantly at Tg. Why?	[1] [3]		
Q5	When the grain size of a ferromagnetic material, hematite is decreased it's coercivity increases and beyond a critical diameter it starts decreasing with further decrease in grain size. Give reason for this observation. [4]				
Q6	What do you understand by Meissner effect?[1]				
Q7	What are the three different forces responsible for formation of domains in magnetic materials? [3]				
Q8	A coil of wire is 0.32 m long and has 300 turns. It carriers a current of 14 A. Find the magnitude of magnetic field strength. Also, compute the flux density, B, if the coil is in vacuum. Given that $\mu_0 = 4\pi \times 10^{-7}$. [2]				

END