Birla Institute of Technology and Science Pilani (Rajasthan) CHEM E333: Chemistry of Materials

CHEM F333: Chemistry of Materials										
Comprehensive Exam				Part I (Closed Book)				I Semester 2022-2023		
Max. Marks: 10				Time: 45 minutes				Date: 27.12.2022		
Note: There are ten questions in all. Write the most appropriate answers in the boxes. Each correct										
answer will be awarded 1 mark and 0.25 mark will be deducted for each incorrect answer.										
Q 1. The rate of a reaction that obeys Avrami kinetics (Given: $n = 3.0, k = 5 \times 10^{-3}$) is(A) 0.193 s(B) 1.93 s(C) 19.3 s(D) 193 s										
Q. 2 The number of atoms in the critical nucleus when an FCC metal solidifies with homogeneous										
nucleation. (Given: melting temperature = $1085 ^{\circ}$ C, latent heat of fusion = $1628 J/\text{cm}^3$, surface free										
energy = -177×10^{-7} J/cm ² , degree of supercooling = 235 °C, lattice parameter = 0.3615 nm.)										
(A) 174 (B) 348			0	(C) 522				(D) 696		
Q.3 A cy	lindrical s	specimen	of an alloy	n alloy with elastic modulus of 105 GI				-		
of 4.0 mm experiences only elastic deformation when a tensile load of 2500 N is applied. The										
maximum length of the specimen before deformation if the maximum allowable elongation is										
0.40 mm is (D) 211 (D) 250 (D) 270										
(A) 106 mm (B) 211 mm (C) 250 mm (D) 270 mm								ftungstan		
Q 4. Brinell hardness measurement is made on an alloy using a 10 mm diameter sphere of tungsten carbide. A load of 3000 kg produces a 3.91 mm diameter impression on the iron surface, the HB is										
(A) 77 (B) 120 (C) 240 (D) 480										
\mathbf{Q} 5. High density polyethylene may be chlorinated by inducing the random substitution of chlorine										
atoms for hydrogen. The concentration of Cl (in wt%) that must be added if this substitution occurs										
for 7% of all the original hydrogen atoms is (At. wt. in g/mol: $H = 1.008$, $C = 12.01$, $Cl = 35.45$)										
(A) 10.16% (B) 13.16% (C) 20.33% (D) 26.33%										
Q 6. From the data given below, state which metal oxide is protective in nature?MetalAtomic weight ofMetal densityMetalMetal oxide										
Metal	e			Metal density			Metal oxide $dansity (g/am^3)$			
Na	metal (g/mol) 22.99			(g/cm^3) 0.967			density (g/cm^3) 2.27			
Nb	92.91		8.57		Na ₂ O Nb ₂ O ₃		4.47			
Ti	47.87		4.507		TiO_2O_3	5.10				
W	183.84		19.25		WO ₃	7.30				
(A) Na ₂ C		(B) N			C) TiO_2	1100	(D) WO	3		
\mathbf{Q} 7. The number average molecular weight of a polypropylene is 1,500,000 g/mol, the degree of										
polymerization is										
(A) 3564.6 (B) 35646 (C) 356460 (D) 3564600										
Q 8. A thick steel sheet of area 420 cm ² on corrosion experiences a weight loss of 350 g in one										
year, to what rate of corrosion does this correspond? Density of steel is 7.9 g/cm ³ .										
(A) 41.48 mpy (B) 46.7 mpy (C) 4.1 mm/yr (D) 4.6 mm/yr \mathbf{Q} 9. The magnetization within a bar of some metal alloy is 2.4×10^5 A/m at an H field of 40 A/m,										
Q 9. The magnetization within a bar of some metaranov is 2.4×10^{-6} A/m at an H field of 40 A/m, the magnetic flux density (tesla) within this material is ($\mu_0 = 1.257 \times 10^{-6}$ H/m)										
(A) 0.10 (B) 0.20 (C) 0.30 (D) 0.40										
Q 10. The time required by an electron to traverse a 20 mm length of a germanium crystal at room										
temperature if the magnitude of the electric field is 2000 V/m is ($\mu_e = 0.38 \text{ m}^2/\text{V s}$)										
(A) 1.31×10^{-5} s (B) 2.63×10^{-5} s (C) 3.94×10^{-5} s (D) 5.26×10^{-5} s										
Answers										
1	2	3	4	5	6	7	8	9	10	
