Q1. (a) Explain the distinction between a binding site and a binding region.
(b) Schematically explain the binding of a chemical messenger to a protein receptor. Illustrate the binding of the given neurotransmitter to a binding site of receptor

Neurotransmitter
(c) Briefly explain, (i) Dipole-dipole and ion-dipole interactions

(d) Indicate what drug-receptor interactions are involved at every
(ii) Prodrugs than one kind of interaction is possible for each letter.

(e) 4-Anilinoquinazoline \mathbf{M} had useful in vitro activity but its in vivo activity was hampered as it gets rapidly metabolized by cytochrome P 450 to produce two metabolites. Identify the structures of metabolites and modified structure which is resistance to metabolism. 4
Q2 (a) Identify the intermolecular/intramolecular that are possible for the side chain of Phenylalanine and Serine

3
(b) What is the one letter code for the polypeptide, Glu-Leu-Pro-Asp-Gly-Thr
(c) Acetylcholine is the substrate for the enzyme acetylcholinesterase. Suggest what short of binding interactions could be involved in holding acetylcholine to the active site 4

Q3. (a) Describe Lipinski's rule of five. Verify the Lipinski's rule of five for the following drug molecule.

4

(b) A lead compound has a mono-substituted aromatic ring present as part of its structure. An analogue was synthesized containing a para chloro substituent which had approximately the same activity. It was decided to synthesize an analogue bearing a methyl group at the para position. This showed increased activity. What analogue would you prepare next and why?
(c) Calculate the $\log \mathrm{P}$ value for \boldsymbol{p}-methylphenol (Values of π for a range of substituents)

Group	CH 3	$t-\mathrm{Bu}$	OH	OCH_{3}	CF_{3}	Cl	Br	F
π (aliphatic substituents)	0.50	1.68	-1.16	0.47	1.07	0.39	0.60	-0.17
π (aromatic substituents)	0.52	1.68	-0.67	-0.02	1.16	0.71	0.86	0.14

(d) Phenols are antiseptics. Hansch analysis carried out on a series of phenols with the general structure \mathbf{A} (p- $\left.\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)$ yielded the Hansch equation $\log 1 / \mathrm{C}=1.5 \Pi-0.2 \sigma+2.3(\mathrm{n}=23, \mathrm{~s}=0.13, \mathrm{r}=0.87) \quad 5$ What is (I) the significance of the terms n , s and r , (ii) the relative significance of the lipophilicity and electronic distribution of a phenol of type \mathbf{A} on its activity and (iii) the effect of replacing the R group of A by a more polar group?
(e) Write the metabolites of antiviral agent given below

Q4. (a) Write the target and mechanism of action for chlormethine $\left[\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right]$. Why chlormethine is too reactive to survive the oral route? Design an analogue of chlormethine with reduced side effects.
(b) Lineweaver-Burk plots are extremely useful in determining the nature of inhibition. Draw LineweaverBurk plots with and without competitive inhibitors present

