Birla Institute of Technology & Science, Pilani Pilani Campus, Rajasthan - 333 031

I Semester 2017-2018, Mid-term examination

Course: CHEM F337 P Course Title: Green Chemistry and Cataly Instruction to students: Answer all question	Part A: Closed Book Typis Typis and answer all parts of a question together	Time: 90 min. Max. Marks: 60
Q. 1 a) Explain why the use of product yield as a way of measuring the efficiency of a chemical reaction is considered to be inadequate in the context of green chemistry.2b) Define the terms atom economy (AE), E-factor and effective mass yield (EMY). Comment critically on their appropriateness as a green chemistry metrics. Give examples of chemical reactions with 100% atom economy and with $<50\%$ atom economy.6c) A preparation of 4-bromoanisole (BrC ₆ H ₄ OCH ₃) is shown below.C ₆ H ₅ OCH ₃ (108 g) + Br ₂ (200 g) \rightarrow BrC ₆ H ₃ OCH ₃ (120 g) + HBrCalculate percentage yield, atom economy and E-factor, stating any assumptions.6		
Q. 2 a) Write at least two characteristic of the following solvents because of which they are considered as alternative solvents to traditional solvents. Which of these is/are renewable solvent?		
i) Ionic liquids ii) scCO ₂	iii) Ethyl lactate	4
b) Why ionic liquids are termed as 'design	her solvents'? Provide an example to support y	our answer. 3
c) 'Design for Energy Efficiency' is one of synthetic chemistry.	of the twelve principles of green chemistry. Ex	plain this principle in relation to 3
Q. 3 a) Compare the insertion process and	migration process in catalysis with example.	4
b) Define turn over number (TON) in homogeneous catalysis. Benzophenone is prepared in 91% yield by the carbonylative Suzuki-Miyaura coupling of phenyl iodide (0.5 mmol) and phenyl boronic acid (0.75 mmol) in the presence of K_2CO_3 (1.5 mmol), Pd(0) catalyst (10 ⁻⁴ mol %), CO (2 bar) in anisole (10 mL) at 120 °C after 5 h. Calculate TON and TOF for this reaction.		
c) Write mechanism for the reduction of p	ropene using Wilkinson's catalyst.	4
Q. 4 a) Define ROMP. Write structural un	it of polymer obtained from the following read	ction. 3
Cp ₂ Ti=CH ₂		
b) Differentiate between isotactic, syndiot	actic and atactic polymers.	3
c) Reduction of aliphatic nitro compounds reaction, termed "false sonochemistry". E	s with hypophosphites under ultrasonic irradian xplain, why?	tion can be classified as a type II 3
Q. 5 a) Write conventional and clean synthesis of adipic acid. Highlight the green chemistry principle involved in clean synthesis of adipic acid.		
b) Differentiate between the characteristic	s of heterogeneous and homogeneous catalysis	s. 3
c) Write basic composition of zeolite catalyst. Comment on polarity of zeolite with Si/Al ratio greater than one. 3		
 d) The traditional synthesis of ethylbenzene is a Friedel-Crafts alkylation. The modern industrial synthesis involves mixing ethylene and benzene in the presence of a zeolite (ZSM-5). In what ways would you consider this method to be greener than the Friedel-Crafts reaction? 3 		

-End of the examination-