All questions are compulsory. Answer the sub-parts of a question together.
Q. No. 1. (i). Write the IUPAC nomenclature names for the following heterocycles.
(a).

(b).

(c).

(d).

(ii). Indole possess a higher resonance energy as compared to pyrrole. Why?
(iii). With a suitable example, show that furan prefers to undergo addition reaction over substitution reaction.
(iv). Electrophilic substitution reaction in quinoline occurs at $\mathrm{C}-5 / \mathrm{C}-8$ positions as compared to $\mathrm{C}-6 / \mathrm{C}$ 7 positions. Why?
(v). Illustrate one example of cycloaddition reaction given by substituted aziridine.
Q. No. 2. Using appropriate reactants/reagents/solvents, carry out the following conversions in not more than 3-4 step. (No Mechanism is required for any sub-step, however do show important intermediates involved in the reaction)
[5x3=15]
(i). Phenylhydrazine to 2-methyl-3-formylindole
(ii). Pentan-2,4-dione to 2-amino-3-cyano-4,6-dimethylpyridine
(iii). cis-2,3-Dimethyloxirane to cis-2,3-dimethylaziridine
(iv). Succinic Acid to Diethyl furan-3,4-dicarboxylate
(v). 3,5-Dimethylisooxazole to N-tosylazetidine
Q. No. 3. Complete the reactions and propose a detailed mechanism for the formation of major product.
[$3 \times 5=15$]
(i).

(ii).

(iii).

Q. No. 4. Identify the structures of A-J (with correct stererochemistry, wherever applicable) for the following chemical transformations. (No mechanism required)
(i).

Toluene, warm
(ii).

 C
(iii).

(iv).

(v).

(vi).

(vii).
 $\xrightarrow[\text { heat }]{\text { Alkaline } \mathrm{KMnO}_{4}} \mathrm{H}$
(viii).

(ix).

