

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI Pilani Campus, Chemistry Department Inorganic Chemistry -III, CHEM F343, Semester II, 2017 - 18

0X

	COMPREHENSIVE	Examinations, 01 May, 2	018	I
PART A		CLOSED BOOK)	Marks Obtained	
Maximum Marks: 20	Dui	Duration: 30 minutes		1
Name:		ID		
	Answe	er all Questions		
1. Pick up the correct a	nswer (Each wrong answer	will deduct 0.25 marks):	[1×10]	
(i) The prime considerat	ion of a capacitor design of a m	material is its		
(A) permittivity	(B) permeability	(C) dielectric constant	(D) reflectivity	
(ii) Heavy metal sponge	contains			
(A) mesoporous silica fu	inctionalized with alkanethiol	groups (B) zeolites function	nalized with enzymes	
(C) MOF functionalized with alkanethiol groups (D) macroporous silica function			lica functionalized with enzyme	
(111) When a material doe (A) Reman scattering	es not interact with light then (\mathbf{P}) reflection	It is (C) refrection	(D) transmission	
(A) Kaman scattering	(B) reflection	(C) refraction	(D) transmission	
(iv) The most commonly	v used ligand in the MOF synt	hesis is		
(A) ethylene diamine	(B) 1,4 benzenedicar	boxylate (C) porphyrin	(D) pyridine	
	·, · , · 1		L	
(v) Introduction of port (Λ) increase of scattering	osity in a material causes	(C) increase of transmissi	ion of light	
(B) increase largely the	absorption coefficient	(D) increase reflection of	light	
	1		5	
(vi) The conductivity (2 ⁻¹ . m ⁻¹) of gold at 200°C is, ($p_{20^{\circ}C} = 24.4 \times 10^{-9} \Omega$ m and α	$= 0.0034^{\circ}C^{-1})$	
$(A)18.8 \times 10^{-9}$	(B) 25.4×10^{6}	(C) 39.3×10^{-9}	(D) 58.4×10^3	
(vii) A reaction has AG	0 at 373K as 25 kJ/mol. The re	paction		
(A) may happen at high	er temperature	(B) is governed by activation	tion energy	
(C) does not require a	catalyst to proceed at 373 K	(D) may proceed with a c	atalyst at 373 K	
(viii) Kaolinite, Illite, I	Montmorillonite are			
(A) macroporous mater	(B) mesoporous mat	erials (C) microporous mater	rials (D) nanomaterials	
(ix) Barium titanate is				
(A) ferrimagnetic due to its tetragonal structure (B) ferroelectric due to its tetragonal structure				
(C) ferromagnetic due t	o its cubic strcture18.2	(D) ferrielectric due its cu	ibic structure	
(v) V nov amiggion	talia placa from			
(A) $3d$ to $2s$	(B) 3n to 2n	(C) 2s to 3p	(D) $3n$ to $2s$	
()	(D) of to D	(c) 2 0 to cp		

Q2. Mention any of the two popular techniques of encapsulation (ship-in-a-bottle) of complexes inside zeolite pore and describe it very briefly [2]

[2]

[2]

Q3. How does the conductivity of n-type semiconductor vary with temperature?

Q4. With the help of a diagram, show initial and maximum permeability of a material when subjected to magnetic field. [2]

Q5. MnO shows antiferromagnetism. How?

Q6. Show the mechanism of acid catalyzed hydrolytic poly-condensation of silicon alkoxides to silica. [2]
