Write your name and ID no on the question papers. All questions are compulsory.
Q. No. 01. (a) With the help of Molecular Orbital Theory, explain why $\left[\mathrm{CH}_{3}-{ }^{-} \mathrm{CH}_{2}-\mathrm{OEt}\right]$ radical is stable.
(b) What are persistent radicals. Give one example.
(c) Based on Baldwin rules for cyclization, complete the following figure.

(d) Complete the reaction and propose a detailed mechanism in the space provided.

(i) $\mathrm{BBu}_{2}-\mathrm{OTf}, \mathrm{NEt}_{3}$
(ii) PhCHO
Q. No. 02. Fill in the blanks.

(ii)

 HCOOH, Base
(iii) $\mathrm{RhH}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

(iv)

(v)

(vii)

(Final Product)
(viii)

CHEM F415, FRONTIERS IN ORGANIC SYNTHESIS

Comprehensive Examination (Open Book)
Max. Marks: 60
Duration: $\mathbf{1 2 0}$ minutes
Date: $\mathbf{0 4}^{\text {th }}$ May 2017
Write your name and ID no on the question papers. All questions are compulsory.
Q. No. 01. Compound \mathbf{C} is an important intermediate for synthesizing Quadrigemine \mathbf{C} (a polypyrrolidinoindoline alkaloid). Overman and co-workers synthesized compound \mathbf{C} from $\mathbf{A} \& \mathbf{B}$ by using two different cross-coupling reactions in a consecutive fashion (Figure 1). Identify the name of the two cross coupling reactions. Work out the synthesis of \mathbf{C} from \mathbf{A} and \mathbf{B}. (Mention all the reagents/catalyst required for these two steps and Briefly show their mechanism)

Starting Material (A)

Starting Material (B)

(Hint: Assume structure below the dotted line (------) to be mirror image of upper structure and put it equal to a symbol C' and perform the reactions on the upper structure)
Q. No. 02. (a) Halcomb and his group employed the application of a cross coupling reaction to forge the synthesis of 12 -membered macrocyclic ring to prepare intermediate \mathbf{E}, which is required for preparing terpenoid natural product phomactin A (Figure 2). If you are provided with starting materials \mathbf{D} and $9-\mathbf{B B N}$, propose the synthesis of intermediate \mathbf{E}. (Mention all the reagents/catalyst required and show a detailed labeled mechanism)

Starting Material D

INTERMEDIATE E
(b) Consider a mixture of hypothetical enantiomers possessing 75% and 25% of (+)-A and (-)-A respectively. Calculate the \%ee of the mixture.
Q. No. 03. (a)The following compound (F) is mimic of a drug used to control blood clotting. Design its synthesis from the simplest starting materials by first performing its retrosynthetic analysis. Mention all the reagents/catalyst required and label each step by a reaction type/name.

(b) Write the correct structure of the compounds (with correct stereochemistry) obtained after step (i) and (ii) in the following transformation.

Q. No. 04. (a) Capnellene is a naturally occurring hydrocarbon derived from Capnella imbricata, a species of soft coral found in Indonesia. It could be obtained from compound G by employing two sequential 5-exo radical cyclizations. Using appropriate reagents, propose a detailed mechanism for its synthesis from \mathbf{G}.

(b) Complete the reaction and propose a detailed mechanism for the given chemical transformation:

(iii) $\mathrm{H}_{2} \mathrm{O} \quad$ (Hint: Indole C -3 carbon is nucleophilic)
Q. No. 05. Propose a detailed mechanism for the following chemical transformation.
(i)

(iii)

