Birla Institute of Technology \& Science Pilani
 Pilani Campus
 I Semester 2022-2023
 CHEM F422 Statistical Thermodynamics
 Comprehensive Examination
 (Open Book)
 20 December 2022

Max. Marks: 35
Duration: $\mathbf{3}$ hrs.
Instructions to the student:

1) There are six questions (two pages) in total; answer all the questions.
2) Start answering each question on a fresh page and answer all parts of a question together.
3) Write brief answers to the point with proper justification.
4) Mobile phones, lap-tops etc. are to be switched off and kept away from you.
5) Open book test. Textbook, Ref. books, class notes, and printed slides are allowed. However, exchange of these materials is not allowed.
6) Any unfair means, if identified, will be sternly dealt with.
7) Data required are available in Text and/or Reference books. However, for quick reference the following constant values are given.

DATA:

$\mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; \mathbf{R}=0.0820575 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \mathbf{k}=\mathbf{k}_{\mathrm{B}}=1.38065 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \mathbf{k}=\mathbf{k}_{B}=0.69509 \mathrm{~cm}^{-1} \mathrm{~K}^{-1}$;
Avogadro's Number $=\mathrm{N}_{\mathrm{A}}=6.022142 \times 10^{23} \mathrm{~mol}^{-1} ; \mathbf{h}=6.626069 \times 10^{-34} \mathrm{~J} ; \mathbf{e}=1.60216 \times 10^{-19} \mathrm{C}$;
$\mathrm{m}_{\mathrm{e}}=9.10938 \times 10^{-31} \mathrm{~kg} ; \mathbf{F}=96485.34 \mathrm{C} \mathrm{mol}^{-1} ; \mathbf{c}=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} ; \varepsilon_{0}=8.854188 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$;
$\mathrm{g}=9.807 \mathrm{~m} \mathrm{~s}^{-2} ; 1$ calorie $=4.184 \mathrm{~J}$.

1. (a) Give an example of any function $f(x, y, z)$ which is both homogeneous and even.
(b) Maximize
$W\left(N_{1}, N_{2}, \ldots, N_{M}\right)=\frac{N!}{\prod_{j=1}^{M} N_{j}!}$ with respect to each N_{j} under the constraints that
$\sum N_{j}=N=a$ fixed constant and
$\sum E_{j} N_{j}=\mathcal{E}=$ another fixed constant
Hint: Consider N_{j} 's to be continuous, large enough to use Stirling's approximation of N_{j} !, and leave your answer in terms of the two undermined multipliers.
2. System 1 is an ideal gas and is composed of N 'red' atoms of mass $\mathrm{m}, 2 \mathrm{~N}$ 'blue' atoms of mass m and 3 N 'green' atoms of mass m . Atoms of the same color are indistinguishable. System 2 is another ideal gas having the same total number of atoms (each one of mass m) as in system 1, however, all the atoms of system 2 are of same color 'white'. (a) Write the canonical partition functions for system1 and system 2 in terms of 'molecular' partition functions. (b) Find out the entropy difference between system 2 and system 1 in terms of N and k . Given: $\mathbf{S}=\mathbf{k T}(\partial \ln \mathbf{Q} / \partial \mathbf{T})_{\mathrm{V}, \mathbf{N}_{\mathrm{B}}}+\mathbf{k} \ln \mathbf{Q}$.
$[2+3=5]$
3. Show that

$$
\begin{equation*}
\overline{(E-\bar{E})^{3}}=k^{2}\left\{T^{4}\left(\frac{\partial C_{V}}{\partial T}\right)+2 T^{3} C_{V}\right\} \tag{4}
\end{equation*}
$$

4. (a) Write the symmetry numbers and C_{V} (classical) for the following molecules:
(i) XeF_{4} (square planar) (ii) PF_{5} (tbp)
(b) Arrange the following quantities in the increasing order of their numerical values: $\boldsymbol{\theta}_{v}^{\boldsymbol{H}_{2}}, \boldsymbol{\theta}_{r o t}^{\boldsymbol{H}_{2}}, \boldsymbol{\theta}_{v}^{C l_{2}}, \boldsymbol{\theta}_{\text {rot }}^{C l_{2}}, \boldsymbol{\theta}_{v}^{H C l}, \boldsymbol{\theta}_{\text {rot }}^{\mathrm{HCl}}$. Briefly justify your answer.
(c) Discuss about the kind of rotational levels (odd/even) possible for the molecule ${ }^{16} \mathrm{O}^{16} \mathrm{O}$ in its ground state.
5. (a) Consider the following equilibrium:

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g})
$$

Write an expression for the equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ in terms of the molecular partition functions. No need for any numerical calculations. But write in detail the expressions in terms of characteristic temperatures of rotation, vibration and D_{o} etc.
(b) Calculate the value of K_{p} at 750 K for the above equilibrium in terms of appropriate atmospheric units, using the data given in Table 9-6 of the textbook.
6. (a) Derive $\boldsymbol{q}_{r o t}^{\text {class }} \sim \mathbf{8} \boldsymbol{\pi}^{2} I k T$ for rigid rotor starting from

$$
q_{\mathrm{rot}} \sim \int_{-\infty}^{\infty} \int d p_{\theta} d p_{\phi} \int_{\theta}^{2 \pi} d \phi \int_{\theta}^{\pi} d \theta e^{-\beta H}
$$

where
Note:

$$
\begin{equation*}
H=\frac{1}{2 I}\left(p_{\theta}^{2}+\frac{p_{\phi}^{2}}{\sin ^{2} \theta}\right) \tag{3}
\end{equation*}
$$

$\int_{-\infty}^{\infty} e^{-a x^{2}} d x=2 \int_{0}^{\infty} e^{-a x^{2}} d x=2 \sqrt{\frac{\pi}{4 a}}$
(b) Calculate the number of Schottky defects per mole of crystal at 500 K and 1500 K given that it takes 1.5 eV to bring an atom or ion from an interior lattice site to a surface lattice site $\left(1 \mathrm{eV}=1.60216 \times 10^{-19} \mathrm{~J}\right)$.

