Instructions to the student:

1) There are five questions in total; answer all the questions.
2) Start answering each question on a fresh page and answer all parts of a question together.
3) Write brief answers to the point with proper justification.
4) Data required are available in Text and/or Reference books. However, for quick reference the following constant values are given.

DATA: $\quad \mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; \mathbf{R}=0.0820575 \mathrm{~L}$ atm $^{-1} \mathrm{~mol}^{-1} ; \mathbf{k}=1.38065 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$;
Avogadro's Number $=\mathbf{N}_{\mathrm{A}}=6.022142 \times 10^{23} \mathrm{~mol}^{-1} ; \mathbf{h}=6.626069 \times 10^{-34} \mathrm{~J} \mathrm{~s}$;
$\mathrm{e}=1.60216 \times 10^{-19} \mathrm{C} ; \mathrm{m}_{\mathrm{e}}=9.10938 \times 10^{-31} \mathrm{~kg} ; F=96485.34 \mathrm{C} \mathrm{mol}^{-1}$;
$\mathbf{c}=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} ; \varepsilon_{0}=8.854188 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} ; \mathbf{g}=9.807 \mathrm{~m} \mathrm{~s}^{-2}$.

1. (a) Determine whether the following functions are homogeneous or not; If homogeneous find out the degree of the function.
[4]
(i) $f(x)=4 x^{3}$
(ii) $f(x, y)=a^{x} b^{y}-x y$
(iii) $f(x, y, z)=a x^{2} / y+b z+c z^{2} / x+d y$
(iv) $f(z)=z^{3}+\cos z+i \sin z$
(b) Consider a function $f(x, y, z)=2 x^{2}+8 y^{2}+z^{2}$ subject to the constraint $g(x, y, z)=6 x+$ $4 y+4 z-72=0$. Write down the equations using the Lagrange multiplier method that is required to determine the extremum value of the function $f(x, y, z)$.
2. Assume four systems (microstates), A, B, C, D belong to an ensemble. Each system can have the possible energy states of $E_{1}=1 \mathrm{kT}, \mathrm{E}_{2}=2 \mathrm{kT}$, and $\mathrm{E}_{3}=3 \mathrm{kT}$. Suppose further that there are just three distributions which satisfy the conditions of namely, $\sum_{j} \mathrm{a}_{\mathrm{j}}=4$, and $\sum_{j} \mathrm{a}_{\mathrm{j}} \mathrm{E}_{\mathrm{j}}=8$;

Energy \rightarrow Distribution \downarrow	E_{1}	E_{2}	E_{3}
$1^{\text {st }}$	$\mathrm{a}_{1}=1$	$\mathrm{a}_{2}=2$	$\mathrm{a}_{3}=1$
$2^{\text {nd }}$	$\mathrm{a}_{1}=2$	$\mathrm{a}_{2}=0$	$\mathrm{a}_{3}=2$
$3^{\text {rd }}$	$\mathrm{a}_{1}=0$	$\mathrm{a}_{2}=4$	$\mathrm{a}_{3}=0$

(a) Determine the number of ways one may have the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ distribution.
(b) What is the probability of observing E_{3} in the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ distribution?
(c) Determine the over-all probability of observing E_{3}.
3. (a) Show that entropy of a system in the grand canonical ensemble can be written as

$$
\begin{equation*}
S=-k \sum_{N} \sum_{j} P_{N j} \ln P_{N j} \tag{4}
\end{equation*}
$$

where $P_{N j}=\frac{\exp \left(-\beta E_{N j}-\gamma N\right)}{\sum_{N} \Sigma_{j} \exp \left(-\beta E_{N j}-\gamma N\right)}$.
(b) The isothermal-isobaric partition function of an ideal-monoatomic gas is

$$
\Delta=\left[\frac{(2 \pi m)^{3 / 2}(k T)^{5 / 2}}{p h^{3}}\right]^{N}
$$

Derive an expression for chemical potential based on the above partition function.
4. (a) Write down the terms, corresponding levels and the degeneracies of each level for the excited state configuration of $\mathrm{He}, 1 \mathrm{~s}^{1} 2 \mathrm{p}^{1}$.
(b) Calculate the rotational contribution to the entropy of HD at $20 \mathrm{~K}, 100 \mathrm{~K}$ and 300 K using appropriate formulae, given that the $\theta_{\text {rot }}$ of HD is 42.7 K .
5. (a) Derive an expression for the ratio of ortho to para populations of $\left({ }^{14} \mathrm{~N}\right)_{2}$ in terms of rotational parameters and temperature (Nuclear spin (I value) of ${ }^{14} \mathrm{~N}=1$). Based on the data given in Table 6.1. of Text Book predict this ratio at 30 K and 300 K .
(b) Fraction of the molecules in the jth rotational level can be defined as

$$
f_{J}=2 J(J+1)\left(\frac{\Theta_{r o t}}{T}\right) e^{-\Theta_{r o t} J(J+1) / T}
$$

Assuming \mathbf{J} is continuous get an expression for $\mathbf{J}_{\max }$ value of J for which f_{J} is maximum. [3]

