Birla Institute of Technology & Science, Pilani Pilani Campus I Semester, 2022-2023 CHEM F4222 Statistical Thermodynamics Mid Semester Test (Open Book) 1 Nov 2022

Max. Marks: 35

Duration: 1hr 30 min.

Instructions to the student:

1) There are five questions in total; answer all the questions.

2) Start answering each question on a fresh page and answer all parts of a question together.

3) Write brief answers to the point with proper justification.

4) Data required are available in Text and/or Reference books. However, for quick reference the following constant values are given.

DATA: $\mathbf{R} = 8.3145 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$; $\mathbf{R} = 0.0820575 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$; $\mathbf{k} = 1.38065 \text{ x} 10^{-23} \text{ J} \text{ K}^{-1}$; **Avogadro's Number** = $\mathbf{N}_{\mathbf{A}} = 6.022142 \text{ x} 10^{23} \text{ mol}^{-1}$; $\mathbf{h} = 6.626069 \text{ x} 10^{-34} \text{ J} \text{ s}$; $\mathbf{e} = 1.60216 \text{ x} 10^{-19} \text{ C}$; $\mathbf{m}_{\mathbf{e}} = 9.10938 \text{ x} 10^{-31} \text{ kg}$; $\mathbf{F} = 96485.34 \text{ C} \text{ mol}^{-1}$; $\mathbf{c} = 2.99792458 \text{ x} 10^8 \text{ m} \text{ s}^{-1}$; $\mathbf{\epsilon}_{\mathbf{0}} = 8.854188 \text{ x} 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$; $\mathbf{g} = 9.807 \text{ m} \text{ s}^{-2}$.

1. (a) Determine whether the following functions are homogeneous or not; If homogeneous find out the degree of the function. [4]

(i) $f(x) = 4x^3$ (ii) $f(x, y) = a^x b^y - xy$ (iii) $f(x, y, z) = ax^2/y + bz + cz^2/x + dy$ (iv) $f(z) = z^3 + \cos z + i \sin z$ (b) Consider a function $f(x, y, z) = 2x^2 + 8y^2 + z^2$ subject to the constraint g(x, y, z) = 6x + 4y + 4z - 72 = 0. Write down the equations using the Lagrange multiplier method that is required to determine the extremum value of the function f(x, y, z). [3]

2. Assume four systems (microstates), A, B, C, D belong to an ensemble. Each system can have the possible energy states of $E_1=1 \text{ kT}$, $E_2=2 \text{ kT}$, and $E_3=3 \text{ kT}$. Suppose further that there are just three distributions which satisfy the conditions of namely, $\sum_i a_i = 4$, and $\sum_i a_i E_i = 8$;

Energy→ Distribution ↓	E ₁	E ₂	E ₃
1 st	$a_1 = 1$	a ₂ =2	a ₃ =1
2^{nd}	a ₁₌₂	$a_{2=0}$	a ₃₌₂
3 rd	a ₁ =0	a ₂ =4	a ₃ =0

(a) Determine the number of ways one may have the 1^{st} , 2^{nd} , 3^{rd} distribution.

(b) What is the probability of observing E_3 in the 1st, 2nd, 3rd distribution?

(c) Determine the over-all probability of observing E_3 .

3. (a) Show that entropy of a system in the grand canonical ensemble can be written as

$$S = -k \sum_{N} \sum_{j} P_{Nj} ln P_{Nj}$$
[4]

where $P_{Nj} = \frac{exp(-\beta E_{Nj} - \gamma N)}{\sum_N \sum_j exp(-\beta E_{Nj} - \gamma N)}$. (b) The isothermal-isobaric partition function of an ideal-monoatomic gas is

 $\Delta = \left[\frac{(2\pi m)^{3/2} (kT)^{5/2}}{ph^3}\right]^{N}$

Derive an expression for chemical potential based on the above partition function. [3]

P.T.O.

[7]

4. (a) Write down the terms, corresponding levels and the degeneracies of each level for the excited state configuration of He, $1s^{1}2p^{1}$. [3]

(b) Calculate the rotational contribution to the entropy of HD at 20 K, 100 K and 300 K using appropriate formulae, given that the θ_{rot} of HD is 42.7 K. [4]

5. (a) Derive an expression for the ratio of ortho to para populations of $({}^{14}N)_2$ in terms of rotational parameters and temperature (Nuclear spin (I value) of ${}^{14}N = 1$). Based on the data given in Table 6.1. of Text Book predict this ratio at 30 K and 300 K. [4]

(b) Fraction of the molecules in the jth rotational level can be defined as

$$f_J = 2J(J+1)\left(\frac{\Theta_{rot}}{T}\right)e^{-\Theta_{rot}J(J+1)/T}$$

Assuming J is continuous get an expression for J_{max} value of J for which f_I is maximum. [3]