Birla Institute of Technology \& Science, Pilani (Raj)
 CHEM F422 Statistical Thermodynamics
 Mid-Semester Exam, I Semester, 2023-2024
 (Open Book)
 (Based on Lectures No 1-19 - (first 6 chapters of TB) as per the course handout)

Max. Marks: 35
14 Oct 2023
Duration: 90 min.

Instructions to the student:

1) There are three questions in total; answer all the questions.
2) Data: The following constant values may be used wherever required.

$$
\begin{array}{ll}
\hline \text { DATA: } & \mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; \mathbf{R}=0.0820575 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \mathbf{k}=1.38065 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} ; \\
& \text { Avogadro's Number }=\mathbf{N}_{\mathrm{A}}=6.022142 \times 10^{23} \mathrm{~mol}^{-1} ; \mathbf{h}=6.626069 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; \\
& \mathbf{e}=1.60216 \times 10^{-19} \mathrm{C} ; \mathrm{m}_{\mathrm{e}}=9.10938 \times 10^{-31} \mathrm{~kg} ; \mathbf{F}=96485.34 \mathrm{C} \mathrm{~mol}^{-1} ; \\
& \mathrm{c}=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} ; \boldsymbol{\varepsilon}_{0}=8.854188 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} ; \mathbf{g}=9.807 \mathrm{~m} \mathrm{~s}^{-2} . \\
\hline
\end{array}
$$

1. (I) The binomial coefficient, $\frac{N!}{N_{1}!N_{2}!}$ where $N=N_{1}+N_{2}$. Using Method of Lagrange Multipliers show that $N_{1}=N_{2}=N / 2$, the coefficient exhibits the extremum.
(II) The Poisson probability distribution function can describe the evolutionary process of amino acid substitutions in proteins. The probability $p_{s}(t)$ that exactly s substitutions occur over an evolutionary time t is $p_{\mathrm{s}}(t)=\frac{e^{-\alpha t}(\alpha t)^{\mathrm{s}}}{\mathrm{s}!}$ where α is the rate of amino acid substitutions. Fibrinopeptides evolve rapidly, $\alpha=9 \times 10^{-9}$ year $^{-1}$. Lysozyme is intermediate: $\alpha=1 \times 10^{-9}$ year ${ }^{-1}$ and histone evolve slowly, $\alpha=0.01 \times 10^{-9}$ year $^{-1}$.
(a) What is the probability that a fibrinopeptide has no substitution at a given site in $t=1$ billion years?
(b) What is the probability that lysozyme has three substitution in 100 million years?
(c) Show that the expected number of substitutions that will occur in time t is αt.
(d) Determine the ratio of the expected number of substitutions in a fibrinopeptide to the expected number of substitutions in histone protein.
2. (a) For an ideal gas the number of states between energy E and $E+\Delta E(E \gg E)$ is $\Omega=$ $\frac{1}{\Gamma(N+1) \Gamma(3 N / 2)}\left(\frac{2 \pi m a^{2}}{h^{2}}\right)^{3 N / 2} E^{(3 N / 2-1)} \Delta E$ where $a^{3}=V$. Using $S=k \ln \Omega$ and $E=\frac{3}{2} N k T$, show that $S=N k \ln \left[\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} \frac{V e^{5 / 2}}{N}\right]$.
(b) Show that for grand canonical ensemble $\bar{E}(V, \beta, \gamma)=-\left(\frac{\partial \ln \Xi}{\partial \beta}\right)_{V, \gamma}$ and $\bar{N}(V, \beta, \gamma)=$ $-\left(\frac{\partial \ln \Xi}{\partial \gamma}\right)_{V, \beta}$ where $\Xi(V, \beta, \gamma)=\sum_{N} \sum_{j} e^{-\beta E_{N j}(V)} e^{-\gamma N}$.
(c) Derive the connection formula for S (entropy) in terms of the grand canonical ensemble starting from $\boldsymbol{p} \boldsymbol{V}=\boldsymbol{k} \boldsymbol{T} \ln \boldsymbol{\Xi}$ and $\boldsymbol{d}(\boldsymbol{p} \boldsymbol{V})=\boldsymbol{S d} \boldsymbol{T}+\boldsymbol{N} \boldsymbol{d} \boldsymbol{\mu}+\boldsymbol{p d V}$.

$$
4+4+2=10
$$

3. (a) Write down $q_{\text {rot,nucl }}$ for D_{2} (Nuclear Spin $\mathrm{I}=1$).
(b) Show that at high temperatures the amount of ortho- D_{2} to para- D_{2} is equal to 2 .
(c) Show that at low temperatures true equilibrium corresponds to almost pure ortho- D_{2}.
(d) Show that at the maximum of a plot of fraction of molecules in Jth rotational state, f_{J}, versus J , the values of J is given by $\mathrm{J}_{\max }=\left(\frac{\mathrm{T}}{2 \theta_{\mathrm{rot}}}\right)^{1 / 2}-\frac{1}{2}$, where $\theta_{\text {rot }}$ is the characteristic temperature of rotation.

$$
2+4+4+3=13
$$

