Birla Institute of Technology \& Science, Pilani (Raj)
 CHEM F422 Statistical Thermodynamics
 Comprehensive Exam, I Semester, 2023-2024

(Open Book)
20 Dec 2023
Duration: 180 min.
Max. Marks: 35

Instructions to the student:

1) There are four questions in total; answer all the questions.
2) Data: The following constant values may be used wherever required.

DATA: $\quad \mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; \mathbf{R}=0.0820575 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \mathbf{k}=1.38065 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$;
Avogadro's Number $=\mathrm{N}_{\mathrm{A}}=6.022142 \times 10^{23} \mathrm{~mol}^{-1} ; \mathbf{h}=6.626069 \times 10^{-34} \mathrm{~J} \mathrm{~s}$;
$\mathrm{e}=1.60216 \times 10^{-19} \mathrm{C} ; \mathrm{m}_{\mathrm{e}}=9.10938 \times 10^{-31} \mathrm{~kg} ; \mathbf{F}=96485.34 \mathrm{C} \mathrm{mol}^{-1}$;
$\mathbf{c}=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} ; \varepsilon_{0}=8.854188 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} ; \mathbf{g}=9.807 \mathrm{~m} \mathrm{~s}^{-2}$.
Binomial theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$

1. Following the random walk model, a particle is moving along x -direction, where p is the probability that the step is to the right and $q=1-p$ probability that the step is to the left. The particle has undergone a total of N steps consisting of n_{1} steps to the right and n_{2} steps to the left. (a) For $N=3$, what is the probability of (i) $n_{1}=3$ and $n_{2}=0$ (ii) $n_{1}=2$ and $n_{2}=1$ (iii) $n_{1}=1$ and $n_{2}=2$ (iv) $n_{1}=0$ and $n_{2}=3$.
(b) Write down the general formula of the probability in a total of N steps, of making n_{1} steps to the right.
(c) What is mean number of \bar{n}_{1} of steps to the right?
(d) Determine the dispersion, $\overline{\left(\Delta n_{1}\right)^{2}} \equiv \overline{\left(n_{1}-\bar{n}_{1}\right)^{2}}$.
2. (a) Show that in a two component open, isothermal ensemble

$$
\overline{N_{1} N_{2}}-\bar{N}_{1} \bar{N}_{2}=k T\left(\frac{\partial \bar{N}_{1}}{\partial \mu_{2}}\right)_{V, T, \mu_{1}}=k T\left(\frac{\partial \bar{N}_{2}}{\partial \mu_{1}}\right)_{V, T, \mu_{2}}
$$

Remember that the probability that a system in the ensemble has N_{1} and N_{2} particles and is in the state j is $\frac{e^{\beta\left(N_{1} \mu_{1}+N_{2} \mu_{2}-E_{N_{1} N_{2}, j}\right)}}{\Xi}$ where $\Xi\left(\mu_{1}, \mu_{2}, T, V\right)=\sum_{N_{1}, N_{2}, j} e^{\beta\left(N_{1} \mu_{1}+N_{2} \mu_{2}-E_{N_{1} N_{2}, j}\right)}$.
(b) Show that Debye frequency $v_{D}=\left(\frac{3 N}{4 \pi V}\right)^{1 / 3} v_{0}$.
3. (a) Given that the values of $\theta_{\text {rot }}$ and $\theta_{\text {vib }}$ for H_{2} are 85.3 K and 6332 K , respectively calculate these quantities for HD and D_{2}.
(b) What molar constant-volume heat capacities would you expect under classical conditions for the following gases: (a) Ne (b) O_{2} (c) $\mathrm{H}_{2} \mathrm{O}$ (d) CO_{2} (e) CHCl_{3}
(c) $\mathrm{NO}_{2}(\mathrm{~g})$ is a bent triatomic molecule. The following data determined from spectroscopic measurements are $\bar{v}_{1}=1319.7 \mathrm{~cm}^{-1}, \bar{v}_{2}=749.8 \mathrm{~cm}^{-1}, \bar{v}_{3}=1617.75 \mathrm{~cm}^{-1}, \bar{A}_{0}=8.0012 \mathrm{~cm}^{-}$ ${ }^{1}, \bar{B}_{0}=0.43304 \mathrm{~cm}^{-1}$ and $\bar{C}_{0}=0.41041 \mathrm{~cm}^{-1}$. Determine the three characteristic vibrational temperatures and the characteristic rotational temperatures for each of the principle axes of NO_{2} (g) at 1000 K .
4. (a) Determine the equilibrium constant at 1200 K for the reaction $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Write the expression and calculate the partition function of all components.
(b) Square-well potential is defined as

$$
u(r)=\left\{\begin{aligned}
\infty, & r<\sigma \\
-\varepsilon, & \sigma<r<\lambda \sigma \\
0, & r>\lambda \sigma
\end{aligned}\right.
$$

Show that the second virial coefficient $B_{2}(T)=b_{0}\left\{1-\left(\lambda^{3}-1\right)\left(e^{\beta \mu}-1\right)\right\}$ where $b_{0}=2 \pi \sigma^{3} / 3$

