Birla Institute of Technology & Science, Pilani (Raj) CHEM F422 Statistical Thermodynamics Comprehensive Exam, I Semester, 2023-2024

(Open Book) 20 Dec 2023

Duration: 180 min.

[2]

[2]

Instructions to the student:

Max. Marks: 35

1) There are four questions in total; answer all the questions.

2) Data: The following constant values may be used wherever required.

DATA: $\mathbf{R} = 8.3145 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$; $\mathbf{R} = 0.0820575 \text{ L} \text{ atm K}^{-1} \text{ mol}^{-1}$; $\mathbf{k} = 1.38065 \times 10^{-23} \text{ J} \text{ K}^{-1}$; **Avogadro's Number** = $\mathbf{N}_{\mathbf{A}} = 6.022142 \times 10^{23} \text{ mol}^{-1}$; $\mathbf{h} = 6.626069 \times 10^{-34} \text{ J} \text{ s}$; $\mathbf{e} = 1.60216 \times 10^{-19} \text{ C}$; $\mathbf{m}_{\mathbf{e}} = 9.10938 \times 10^{-31} \text{ kg}$; $\mathbf{F} = 96485.34 \text{ C} \text{ mol}^{-1}$; $\mathbf{c} = 2.99792458 \times 10^8 \text{ m s}^{-1}$; $\mathbf{\epsilon}_0 = 8.854188 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$; $\mathbf{g} = 9.807 \text{ m s}^{-2}$. **Binomial theorem:** $(x + y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$

1. Following the random walk model, a particle is moving along x-direction, where p is the probability that the step is to the right and q = 1 - p probability that the step is to the left. The particle has undergone a total of N steps consisting of n_1 steps to the right and n_2 steps to the left. (a) For N = 3, what is the probability of (i) $n_1 = 3$ and $n_2 = 0$ (ii) $n_1 = 2$ and $n_2 = 1$ (iii) $n_1 = 1$ and $n_2 = 2$ (iv) $n_1 = 0$ and $n_2 = 3$. (b) Write down the general formula of the probability in a total of N steps, of making n_1 steps to

(b) Write down the general formula of the probability in a total of N steps, of making n_1 steps to the right. [2]

(c) What is mean number of \bar{n}_1 of steps to the right?

(d) Determine the dispersion, $\overline{(\Delta n_1)^2} \equiv \overline{(n_1 - \overline{n}_1)^2}$.

2. (a) Show that in a two component open, isothermal ensemble

$$\overline{N_1 N_2} - \overline{N_1} \overline{N_2} = kT \left(\frac{\partial \overline{N_1}}{\partial \mu_2} \right)_{V,T,\mu_1} = kT \left(\frac{\partial \overline{N_2}}{\partial \mu_1} \right)_{V,T,\mu_1}$$

Remember that the probability that a system in the ensemble has N_1 and N_2 particles and is in the state *j* is $\frac{e^{\beta(N_1\mu_1+N_2\mu_2-E_{N_1N_2,j})}}{\Xi}$ where $\Xi(\mu_1,\mu_2,T,V) = \sum_{N_1,N_2,j} e^{\beta(N_1\mu_1+N_2\mu_2-E_{N_1N_2,j})}$. [3] (b) Show that Debye frequency $\nu_D = \left(\frac{3N}{4\pi V}\right)^{1/3} \nu_0$. [2]

3.(a) Given that the values of θ_{rot} and θ_{vib} for H₂ are 85.3 K and 6332 K, respectively calculate these quantities for HD and D₂. [3]

(b) What molar constant-volume heat capacities would you expect under classical conditions for the following gases: (a) Ne (b) O₂ (c) H₂O (d) CO₂ (e) CHCl₃ [5] (c) NO₂ (g) is a bent triatomic molecule. The following data determined from spectroscopic measurements are $\bar{v}_1 = 1319.7$ cm⁻¹, $\bar{v}_2 = 749.8$ cm⁻¹, $\bar{v}_3 = 1617.75$ cm⁻¹, $\bar{A}_0 = 8.0012$ cm⁻¹, $\bar{B}_0 = 0.43304$ cm⁻¹ and $\bar{C}_0 = 0.41041$ cm⁻¹. Determine the three characteristic vibrational temperatures and the characteristic rotational temperatures for each of the principle axes of NO₂ (g) at 1000 K. [4] 4. (a) Determine the equilibrium constant at 1200 K for the reaction $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. Write the expression and calculate the partition function of all components. [5]

(b) Square-well potential is defined as

$$u(r) = \begin{cases} \infty, & r < \sigma \\ -\varepsilon, & \sigma < r < \lambda \sigma \\ 0, & r > \lambda \sigma \end{cases}$$

Show that the second virial coefficient $B_2(T) = b_0 \{1 - (\lambda^3 - 1)(e^{\beta\mu} - 1)\}$ where $b_0 = 2\pi\sigma^3/3$