Sem-II, 2021-22 Comprehensive Exa Maximum Marks: 2 Attempt all questio	CHEM F430 CHEM F430 amination, Part-A: Clo 25 Maximum tim ons. Circle the correct	Atmospheri osed Book e: 60 minutes : answer(s) for MCQ (√ or a	ic Chemistry Invigilator's signature Date:19-05-202 any other mark will not be considered
Name:		ID.	Marks obtained:
Request for rechecl	k:		
Useful information: = 0.029 kg/mol; C _{CO} 400 – 600 nm; Dew bands: < 320 nm; F _S	R = 8.31 J K ⁻¹ mol ⁻¹ ; S $p_2 = 365 \text{ ppmv}; \text{ Surfac}$ point (P _{H2O} = 23 hPa) $p_3 = 1370 \text{ W m}^{-2}; \sigma = 5.$	Surface pressure = 984 hPa; the temperature = 288 K; P_{H2} = 290 K; A_v = 6.022 × 10 ²³ ; E 67 × 10 ⁻⁸ W m ⁻² K ⁻⁴ .	Dew point (Р _{Н2О} = 11.5 hPa) = 282 K; N _{20, SAT} (293 K) = 23 hPa; Chappuis band Dew point (Р _{Н2О} = 20hPa) = 285 K; Hartle
Q1. Number density	y of CO $_2$ (in molecules	s m ⁻³) at the sea level for P \approx	= 1013 hPa and T = 25°C is
(A) 9.81×10^{21}	(B) 8.97×10^{21}	(C) 9.81×10^{27}	(D) 8.97 × 10 ²⁷
Q2. At sunset, T = 2 night may happen if	93 K, RH = 50%. Assu f the temperature (in	ıme, Р _{н20} remains constant K) of air cool to	t till next morning. Fog formation durin
(A) 290	(B) 285	(C) 282	(D) 280
Q3. Mass density of	fair (in kg m ⁻³) at the	surface of the Earth is	
(A) 1.19	(B) 1.31	(C) 0.50	(D) 2.23
Q4. Some of the fol the size distribution	llowing concepts cou of particulate matte	ld be used to design an ins r in the atmosphere	strument for the direct measurement of
(A) Mass-spectrome	etry (B) Scatteri	ng (C) UV spectros	copy (D) Chemical separation
Q5. Among the follo	owing, the incorrect s	tatement(s) is	
(A) Temperature ind	creases with altitude	in thermosphere and strate	osphere.
(B) UV radiation is a	bsorbed by O_2/N_2 in	thermosphere and O_2 in str	ratosphere.
(C) Temperature de	creases with altitude	in thermosphere and incre	eases with altitude in stratosphere.
(D) Altitude of 18-50	0 km is known as stra	tosphere and 50-80 km is k	known as mesosphere.
Q6. The vapor press of the substance ma of temperature. Est	sure of a substance at ay be assumed to bel imate the temperatu	20°C is 58 kPa and its entha nave like a perfect gas and re (in K) at which its vapor	alpy of vaporization is 32.7 kJ/mol. Vapo enthalpy of vaporization is independer pressure is 66 kPa
(A) 290	(B) 316	(C) 306	(D) 297
Q7. The molecular of an air molecule to t	diffusion coefficient of ravel 1 m by molecul	of air at the sea level is 0.2 ar diffusion is	cm ² s ⁻¹ . The average time (in hours) for
(A) 0.01	(B) 2.8	(C) 6.9	(D) 4.5
Q8. The incorrect st	atement(s) on atmos	pheric composition (mol/m	nol) of Earth, Venus, and Mars is
(A) Maximum CO ₂ is	Earth (B) Maximum	N_2 on Earth (C) Maximum	O_2 on Earth (D) Maximum H_2O on Eart
Q9. Identify the IR a	active modes from the	e following	
(A) Stretching of N ₂	(B) Symmetric str	etching of CO ₂ (C) Stre	tching of H_2O (D) Bending of CO
Q10. Incorrect state	ement(s) among the f	ollowing about actinic flux	is
(A) Drives the chem	istry in atmosphere	(B) Flux from di	rect solar radiation

٦

ľ

Q11. Identify the correct statement(s) for the following reaction: $O_3 + h\nu \rightarrow O + O_2$						
(A) Chappuis band pro	(B) Hartley ba	B) Hartley band produce O (³ P) and O ₂ (³ Δ)				
(C) Hartley band produce O (¹ D) and O ₂ (¹ Δ) (D) Chappuis band produce O (¹ D) and O ₂ (¹ Σ)						
Q12. Reservoir of CIC	Dx is					
(A) CINO ₃	(B) CF ₂ Cl ₂	(C) CIO	OCI	(D) CIOC)	
Q13. One of the majo	r sources of the OH ra	idical in	the stratosphe	ere is		
(A) Photolysis of H_2O	(B) Oxidation	of H ₂ O b	oy O (C) HC) ₂ (D) Collisional	cleavage of H_2O
Q14. According the Cl	napman mechanism, [O ₃] _{ss} do	es not depend	lon		
(A) [N ₂] (B) Rate cor	nstant of O ₂ dissociation	on (C)) Rate of O (¹ D) to O (³ P)	conversion	(D) Temperature
Q15. The correct state	ement about ClO dime	er				
(A) Leading to null cyc	(A) Leading to null cycle for ozone loss (B) Photolysis takes place at the O-O bond					
(C) Photolysis takes pl	ace at Cl-O bond		(D) Leads to c	atalytic cy	cle of ozone	loss
Q16. GWP of a substance is defined with respect to						
(A) CO ₂	(B) CH ₄	(C) H ₂ C)	(D) N₂O	
Q17. A simulation is p	erformed by removin	g all ozo	ne above 30 k	m. The ex	pected result	would be
(A) Cooling of troposp	here and stratospher	e	(B) Troposphe	eric warm	ing and strato	spheric cooling
(C) Warming of tropos	sphere and stratosphe	ere	(D) Troposphe	eric coolin	ig and stratos	pheric warming
Q18. Few billion years surface temperature (s ago, the solar radiat (in K) of Earth at that t	ion was time was	25% less than s	today. As	ssume A = 0.2	28 and f = 0.77. The
(A) 270	(B) 305	(C) 285	,	(D) 325		
Q19. Identify the corr	ect statement(s) abou	ıt greenl	house gases			
(A) Absorbs IR	(B) Absorbs VIS	(C) Abs	orbs UV	(D) Abso	orbs Microwa	/e
Q20. Fluorescence process among the following reactions of X is						
(A) $X^* \rightarrow B1 + B2$	(B) X* + M \rightarrow	X + M	(C) X*	\rightarrow X + hv		(D) X + $h\nu \rightarrow X^*$
Q21. The major sink of peroxyacetylnitrate in the troposphere is						
(A) Dry deposition	(B) Wet deposition		(C) Photoly	sis	(D) Thermal	decomposition
Q22. Ozone production efficiency is defined with respect to						
(A) RH	(B) NOx		(C) ClOx		(D) SO ₂	
Q23. Principle source of CO to atmosphere is oxidation of CH ₄ . The rate constants for oxidation of CH ₄ and CO by OH in the troposphere are $k_1 = 2.5 \times 10^{-15}$ cm ³ molecule ⁻¹ s ⁻¹ and $k_2 = 1.5 \times 10^{-13}$ cm ³ molecule ⁻¹ s ⁻¹ , respectively. Global uniform CH ₄ concentration is 1700 ppbv. Concentration of CO (in ppbv) is						
Q24. Net reaction for oxidation of CO to CO_2 and CH_4 to CO_2 produces one and four molecules of ozone,						

respectively. Emission rate of CH₄ and CO are 3×10^{13} moles yr⁻¹ and 4×10^{13} moles yr⁻¹, respectively. Global production rate of ozone in moles yr⁻¹ is

Q25. The most abundant gaseous selenium species in marine environment is

	*******END******				
(A) CH₃SeSeCH₃	(B) C ₆ H₅SeH	(C) CH₃SeH	(D) CH ₃ SeCH ₃		

Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031

II Semester, 2021-2022

CHEM F430	Atmospheric Chemistry	Date: 19-05-2022
Comprehensive Examination	Max. Time: 120 minutes	Max. marks: 55

Q1. Emission of CFCs was controlled by the Montreal protocol (1987). The protocol was further amended in 1990 (London) and 1992 (Copenhagen) to respond to the increased urgency created by the antartic ozone hole. CFC-12 was used to compare the effectiveness of the original and amended protocols. Atmospheric lifetime of CFC-12 is 100 years against loss by photolysis in the stratosphere. Data were collected from 1989 when the Montreal protocol was implemented. In 1989 the mass of CFC-12 in the atmosphere was 1×10^{10} kg and the emission rate was 4×10^8 kg yr⁻¹.

(a) The Montreal protocol (1987) called for a 50% reduction of CFC emission by 1999 and a stabilization of emission henceforth. Consider a future scenario when CFC-12 emission are held constant at 50% of 1989 values. Calculate the mass of CFC-12 in the atmosphere considering a steady-state situation. Compare your result with the mass of CFC-12 in 1989 and comment. [6]

(b) The subsequent amendments to the Montreal protocol banned CFC-12 production completely as of 1996. Consider a scenario where CFC-12 emission are held constant from 1989 to 1996 and then drop to zero as of 1996. Calculate the masses of CFC-12 in the atmosphere in years 2050 and 2100. Compare your results with the CFC-12 mass in the atmosphere in 1989. [5]

(c) What would have happened if the Montreal protocol had been delayed by 10 years? Consider a scenario where emission are held constant at 1989 levels from 1989 to 2006 and then drop to zero as of 2006. Calculate the masses of CFC-12 in the atmosphere in years 2050 and 2100. Briefly comment on the consequence of the delayed action of the Montreal protocol. [5]

Q2. (a) Write down the catalytic ozone loss cycle that is initiated by the self-reaction of CIO and is a key cycle for the loss of polar ozone. [3]

(b) The ozone abundance at 20 km altitude fell from 2.0 ppm on August 23 to 0.8 ppm on September 22. Assume that the self-reaction of CIO is the rate-limiting step ($k = 1.74 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹) for ozone loss at 20 km. Calculate the mixing ratio of CIO (in ppb) required to account for the observed loss of ozone. Between August 23 and September 22, air in the polar vortex experiences roughly 8 h of sunlight per day. Assume T = 200 K, p = 60 mbar, and [M] = 2.175×10^{18} molecules cm⁻³. [13]

Q3. Consider that the CH₄ + OH reaction (k = $2.45 \times 10^{-12} \exp(-1755/T) \text{ cm}^3$ molecules⁻¹ s⁻¹) is the rate-limiting step in tropospheric ozone production from CH₄. Assume [OH] = 10^6 molecules cm⁻³, p = 1 atm, T = 298 K, global CH₄ mixing ratio is 1.8 ppm, and average height of troposphere ~ 12 km. Calculate the theoretical maximum rate at which ozone could be produced from CH₄ oxidation (in Tg/year) in the troposphere. [16]

Q4. The radiative forcing due to an increase of the atmospheric CO₂ mixing ratio by a factor β can be approximated by $\Delta F = 5.3 \ln \beta$ (W m⁻²).

(a) For a sustained increase in the CO₂ mixing ratio of 1% per year, that is $\Delta F = bt$, calculate the value of the constant b. [3]

(b) At this rate of increase, how many years would be required for the CO₂ mixing ratio to increase from the level of 400 ppm to 560 ppm? [4]