Birla Institute of Techno			
Sem-II, 2022-23	CHEM F430	Atmospheric Chemistry	
Comprehensive Examin	ation, Part-A: Closed Book		Invigilator's signature
Maximum Marks: 54	Maximum time: 90 minutes		Date: 20-05-2023

Name:

ID.

Marks obtained:

Request for recheck:

Useful information: R = 8.31 J K⁻¹ mol⁻¹; h = 6.626 × 10⁻³⁴ J s; Surface pressure = 984 hPa; M_{N2} = 28 g/mol; Dew point (P_{H2O} = 11.5 hPa) = 282 K; M_a = 0.029 kg/mol; M_{O2} = 32 g/mol; Δ_{vap} H_m (ethanol) = 38.9 kJ/mol; C_{CO2} = 365 ppmv; Surface temperature = 288 K; P_{H2O, SAT} (293 K) = 23 hPa; σ_{max} (O₂) = 10⁻¹⁷; M_H = 1.008 amu; ; Dew point (P_{H2O} = 23 hPa) = 290 K; τ_{O2} = 4 × 10⁷; M_{Ar} = 40 g/mol; A_v = 6.022 × 10²³; 1 amu = 1.660 × 10⁻²⁷ kg; Dew point (P_{H2O} = 20hPa) = 285 K; Hartley bands: < 320 nm; F_S = 1370 W m⁻²; σ = 5.67 × 10⁻⁸ W m⁻² K⁻⁴; M_{CI} = 34.969 amu;

Q1. Assume air is composed of N_2 ($C_{N2} = 0.78$), O_2 ($C_{O2} = 0.21$), and Ar ($C_{Ar} = 0.0093$). Calculate the mean molecular weight of dry air. [2]

Q2. The normal boiling point of ethanol is 78.3 °C. We want to boil ethanol at 25 °C under vacuum distillation condition. Determine the magnitude of reduced pressure to achieve this condition. [3]

Q3. What are the forces important for Geostrophic flow in atmosphere?

[2]

(ii) Diurnal cycle of surface heating/cooling leads to ventilation of urban pollution.

Q5. Does growth of corals $(Ca^{+2} + CO_3^{-2} \rightarrow CaCO_3(s))$ cause atmospheric CO₂ to increase or decrease? Explain briefly. [2]

Q6. Calculate atmospheric transmittance as a result of absorption by O_2 . Comment whether O_2 is optically thick or thin based on your result. [3]

Q7. An inert molecule (X) with initial concentration $C_i(0)$ is emitted at a rate of $q_i = 200 \ \mu g \ m^{-2} \ h^{-1}$, calculate its steady-state concentration over a city characterized by an average wind-speed of 3 m s⁻¹. Assume that the city has dimensions of $100 \times 100 \ \text{km}$, a constant mixing height of $1000 \ \text{m}$, and background concentration of X is 1 $\mu g \ m^{-3}$. You may use following relation for concentration: $C_i(t) = C_i(0)e^{-t/\tau_r} + \left(\frac{q_i \times \tau_r}{H} + C_i^0\right)\left(1 - e^{-t/\tau_r}\right)$. Symbols are having usual meaning. You may consider flushing time (τ_r) to be 10 h. [4]

Q8. Determine number density of CO₂ (in molecule m^{-3}) at the sea level for P = 1013 hPa and T = 25°C with C_{CO2} = 365 ppmv [3]

Q9. The concepts of lifetime can be applied to reactions of any order. Determine the lifetime of NO in the following second order reaction: $NO + O_3 \rightarrow NO_2 + O_2$, k (298 K) = 1.9×10^{-14} cm³ molecule⁻¹ s⁻¹. At the Earth's surface at 298 K, the O₃ mixing ratio is 50 ppbv, NO mixing ratio is 10 ppbv. [4]

Q10. GWP of H_2O is higher compared to that of CO_2 . Explain the reasons from molecular level understanding. [4] **Q11.** World population is ever growing along with an increase in the food consumption. "Consequently, the CO₂ level in the atmosphere is also increasing". Comment on this statement. [2]

Q12. The molecular diffusion coefficient of air at the sea level is 0.2 cm² s⁻¹. The average time (in hours) for an air molecule to travel 1 m by molecular diffusion is [2]

(A) 0.01	(B) 2.8	(C) 6.9	(D) 4.5

Q13. Explain the effect of clouds at higher altitude on the Earth's temperature. [3]

Q14. The CO₂ mixing ratio in the stratosphere is always less (by 1-2 ppmv) compared to that in the troposphere. Although, stratosphere does not have any sink of CO₂. Explain this observation. [3]

Q15. Evaluate the rotational constant of ¹H³⁵Cl molecule in Hz. Equilibrium bond length of ¹H³⁵Cl molecule is 127.4 pm. [4]

Q16. Few billion years ago, the solar radiation was 25% less than today. Assume A = 0.28 and f = 0.77. Calculate the surface temperature (in K) of Earth during that period. [4]

Q17. Consider the mechanism for oxidation of CH₄ to CO₂:

$$CH_4 + OH \xrightarrow{O_2} CH_3O_2 + H_2O \tag{1} CH_2O + hv \xrightarrow{O_2} CO + 2HO_2 \tag{4a}$$

$$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$$
 (2a) $CH_2O + h\nu \rightarrow CO + H_2$ (4b)

 $CH_3O_2 + NO \xrightarrow{O_2} CH_2O + NO_2$ (2b) $CH_2O + OH \xrightarrow{O_2} CO + HO_2 + H_2O$

$$CH_{3}OOH + hv \xrightarrow{O_{2}} CH_{2}O + HO_{2} + OH$$

$$CH_{3}OOH + OH \rightarrow CH_{2}O + OH + H_{2}O$$

$$CH_{3}OOH + OH \rightarrow CH_{3}O_{2} + H_{2}O$$

$$(3a)$$

$$CO + OH \xrightarrow{O_{2}} CO_{2} + HO_{2}$$

$$(5)$$

$$CO + OH \rightarrow CO_{2} + HO_{2}$$

$$(5)$$

Assume the following branching ratios: 2:1 for loss of CH_3O_2 by (2a):(2b), 1:1:1 loss of CH_3OOH by (3a):(3b):(3c), and 2:1:1 for loss of CH_2O by (4a):(4b):(4c).

(a) How many molecules of CH_3O_2 are produced in the oxidation of one molecule of CH_4 to CO_2 ? [4] (b) Which reactions in the mechanism consume OH? Which reaction produces OH? What is the net numbers of OH molecules consumed in the oxidation of one molecule of CH_4 to CO_2 ? [3]

********END*******

(4c)

Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 II Semester, 2022-2023

CHEM F430	Atmospheric Chemistry	Date: 20-05-2023
Comprehensive Examination (Open book)	Max. Time: 90 minutes	Max. marks: 40

Q1. (a) Methane is removed from the troposphere by oxidation, and the corresponding lifetime of methane is estimated to be 9 years. Based on this lifetime, would you expect methane to be well mixed in the troposphere? **(b)** The present day methane concentration in the troposphere is 1700 ppbv and is rising at the rate of 10 ppbv/yr. Determine the present day emission of methane using a mass balance equation. Pressure at the top of the troposphere is assumed to be 150 hPa. Moreover, transport of methane to stratosphere may be neglected for this calculation.

(c) Now, assume that chemical loss of methane is possible in the stratosphere. The mixing ratio C of the methane above the troposphere (altitude z) decreases exponentially with z, with a scale height, h = 60 km, as shown in the figure. Using a turbulent diffusion formulation for the vertical flux and assuming steady state for methane in the stratosphere,

show that $-A\left[K_z n_a \frac{dc}{dz}\right]_{troposphere} = L_{stratosphere};$

where K_z is the turbulent diffusion coefficient, the air density is n_a , and the methane mixing ratio is determined just above the troposphere. A is

the surface area of the Earth, and *L*_{stratosphere} is the total chemical loss of methane in the stratosphere.

(d) Calculate $L_{stratosphere}$ assuming a turbulent diffusion coefficient $K_z = 7 \times 10^3$ cm² s⁻¹ and an air density $n_a = 5 \times 10^{18}$ molecules cm⁻³ just above the troposphere. Derive an improved estimate of the present-day emission of methane. [1+4+7+4=16]

Q2. Ozone depletion over Antarctica is catalyzed by chlorine radicals. Ozone depletion could be prevented by the injection of ethane (C_2H_6) into the Antarctic stratosphere. Ethane reacts quickly with Cl to form HCl. Consider the

$$HCl + ClNO_3 \xrightarrow{\text{aerosol}} Cl_2 + HNO_3 \tag{1}$$

$$HCl + N_2O_5 \xrightarrow{\text{aerosol}} ClNO_2 + HNO_3$$
(2)

$$N_2O_5 + H_2O \xrightarrow{\text{aerosol}} 2HNO_3$$
 (3)

$$Cl_2 + h\nu \rightarrow Cl + Cl$$
 (4)

$$ClNO_2 + hv \rightarrow Cl + NO_2$$
 (5)

$$Cl + O_3 \rightarrow ClO + O_2$$
 (6)

$$ClO + NO_2 + M \rightarrow ClNO_3 + M$$
 (7)

$$\begin{array}{c} hv, M\\ CIO + CIO \xrightarrow{hv, M} 2CI + O_2 \end{array} \tag{8} \begin{array}{c} (b)\\ C_2H_6 + \end{array}$$

following ensemble of reactions taking place in the Antarctic stratosphere. Assume the following concentrations in the Antarctic stratosphere when the polar vortex forms: HCl = 3.0 ppbv, ClNO₃ = 0.5 ppbv, and N₂O₅ = 2.0 ppbv. Condensation of PSCs in the polar winter allows aerosol reactions (1)-(3) to proceed. Assume that all of the ClNO₃ reacts by reaction (1), that the excess HCl reacts by reaction (2), and that the leftover N₂O₅ then reacts by (3). Both Cl₂ and ClNO₂ photolyze quickly (reaction (4) & (5)) after the end of the polar night. The NO₂ formed by (5) reacts with ClO by reaction (7) to reform ClNO₃.

(a) Determine the partitioning of chlorine (Cl + ClO), ClNO₃, and HCl after reaction (1) - (7) have taken place. [6]

(b) The reaction of ethane with Cl is: $C_2H_6 + Cl \rightarrow C_2H_5 + HCl$

If 2.0 ppbv ethane were injected into the poral stratosphere after reactions (1) - (7) have taken place, determine the partitioning of chlorine (Cl + ClO), ClNO₃, and HCl. Would such an injection of ethane reduce O₃ loss? [4] (c) How much ethane must actually be injected to convert all the chlorine present to HCl? [2] **Q3.** (a) Cycling of HO_x chemical family ($HO_x = H + OH + HO_2$) can catalyze O_3 loss in a number of ways. Consider the following reactions, each of the reaction is important in at least some regions of stratosphere:

OH + O -> O ₂ + H	(1)
$OH + HO_2 -> H_2O + O_2$	(2)
$OH + O_3 -> HO_2 + O_2$	(3)
$H + O_2 + M -> HO_2 + M$	(4)
H + O ₃ -> O ₂ + OH	(5)
$HO_2 + O -> OH + O_2$	(6)
HO ₂ + O ₃ -> OH + 2O ₂	(7)
$HO_2 + HO_2 -> H_2O_2 + O_2$	(8)

(i) Find five different catalytic O₃ loss cycles starting with reactions of OH.

(ii) Which of the reactions represent sinks for HO_x?

(b) In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to 490 nm light from 100 W source for 2700 s, with 60% of incident light being absorbed. As a result of irradiation, 0.344 mol of absorbing substance decomposed. Determine the primary quantum yield. [5]

[5]

[2]