Adv. Org. Chem. (CHEM G551)
Time: 1 hr (Room No. 1205)
ID No:

Marks 30
December 18, 2023

NAME:
Note: There are total 20 questions. Indicate the most appropriate answer by entering $\mathbf{A}, \mathbf{B}, \mathbf{C}$, or \mathbf{D} in the box provided. Do not overwrite. Do not use a pencil. Each correct answer will be awarded a 1.5 mark, and a 0.5 mark will be deducted for every wrong answer.

Q1. Assign the most suitable product for the given transformation.

(A)

(B)

(C)

(D)

Q2. The number of nodes in the LUMO of 1,3,5-hexatriene is;
(A) 1
(B) 2
(C) 3
(D) 4

Q3. Assign the expected product (P) of the following transformation.

(A)

(B)

(C)

(D)

Q4. Assign the expected product for the following transformation.

(B)

(C)

(D)

Q5. Assign the most suitable product for the given transformation.

(A)

(B)

(D)

(C)

Q6. Predict the structure of the final product A .

(A)

(B)

(C)

(D)

Q7. The relationship between given molecules A and B is. \qquad ..!

(A) No relation
(B) Enantiomers
(C) Same molecule
(D) Diastereomers

Q8. Assign the expected structure of the product for the following reaction.

Q9. Identify the major product for the following reaction.
(D)

(A)

(B)

(C)

(D)

Q10. Which one is the major product for the following transformation?

(A)

(B)

(C)

(D)

Q11. Predict the Hammett ρ value for the following $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction.

(A) -0.5
(B) -4.5
(C) +1.0
(D) +5.5

Q12. Predict the structure of the correct product for the given transformation.

(A)

(B)

(C)

(D)

Q13. Assign the most expected product for the following transformation.

(A)

(B)

(C)

(D)

Q14. Assign the suitable product for the given transformation.

(A)

(B)

(C)

(D)

Q15. Predict the correct structure of the correct product for the given transformation.

(A)

(B)

(C)

(D)

Q16. Identify the major product for the following reaction.

(A)

(B)

(C)

(D)

Q17. The energy difference $\left(\Delta \mathrm{G}^{\#}\right)$ between the two enantiotropic transition states to achieve 100% ee will be;
(A) $0 \mathrm{kcal} / \mathrm{mol}$
(B) $100 \mathrm{kcal} / \mathrm{mol}$
(C) $200 \mathrm{kcal} / \mathrm{mol}$
(D) $\infty \mathrm{kcal} / \mathrm{mol}$

Q18. Predict the correct structure of the product for the given transformation.

(A)

(C)

(B)

Q19. Predict the correct structure of the product for the given transformation.

(B)

(C)

(D)

Q20. If a compound has 87% ee, what will be the enantiomeric ratio (e.r.)?
(A) 87: 13
(B) 93.5: 6.5
(C) $94.5: 5.5$
(D) $92.5: 7.5$

I Semester 2022-23
Adv. Org. Chem. (CHEM G551)
Marks 50
Comprehensive Exam (OPEN BOOK)
Time: 2 hr (Room No. 1205)
December
18, 2023
NAME: \qquad ID No: \qquad
NOTE: Attempt to answer all parts of a question together.
Q1. (a) Rationalizing the structure of \mathbf{A} and \mathbf{B} with correct stereochemistry. Label any pericyclic processes during this transformation.

(b) Propose a catalytic enantiomeric synthesis of given compound from the corresponding ketone.

(c) Calculate a chiral compound's enantiomeric ratio (er) with an observed rotation of -97.5°. (Given: rotation of enantiomerically pure $=-105^{\circ}$).

enantiomeric excess (ee) $)$ $=$ $=$ rotation of pure enantiomer$\frac{-97.5}{-105} \times 100=92.86 \sim 93 \%$	
	therefore 93% ee $=96.5: 3.5$ er

Q. 2 (a) Predict the correct product \mathbf{C} and \mathbf{D} for the given transformation and explain the conversion of \mathbf{C} to \mathbf{D}.

(b) Write the stepwise mechanism for the given transformation.

(c) Write the structure of product \mathbf{F} for the given transformation and comment on the optical activity of the product if starting material \mathbf{E} is optically active.

Q3. (a) Propose synthetic steps with reagent and conditions for TM from p-cresol (SM).

(b) Write all synthetic steps for the asymmetric synthesis of \mathbf{H} from \mathbf{G} using the chiral auxiliary approach. (Choose auxiliary and other reactants yourself).
[3]

(c) Write the structure of products (\mathbf{I} and \mathbf{J}) formed for the given transformations.

Q4. (a) Write the steps for the following conversion while mentioning the reaction sequence.

(b) Complete the following reaction by writing the structure of the products \mathbf{K} and \mathbf{L} ?

(c) Draw the mechanistic steps transition state model to justify forming a stable trans-coupling product for the Heckcoupling reaction.
[2]
Q5. (a) Predict structures of \mathbf{M} and \mathbf{N} for the given transformations. Three-dimensional drawings are recommended. State the reaction conditions and mode of pericyclic reaction in the second step.

(b) Propose the resolution of the given compound by the method of your choice.

(c) Write the structure of product \mathbf{O} and explain its formation through a stepwise reaction mechanism.

