Birla Institute of Technology and Science, Pilani, Rajasthan-333031I Semester 2023-24Adv. Org. Chem. (CHEM G551)Marks 30Comprehensive Exam (Close book)Time: 1 hr (Room No. 1205)December 18, 2023NAME:ID No:ID No:

Note: There are total 20 questions. Indicate the most appropriate answer by entering A, B, C, or D in the box provided. Do not overwrite. Do not use a pencil. Each correct answer will be awarded a 1.5 mark, and a 0.5 mark will be deducted for every wrong answer.

Q6. Predict the structure of the final product A.

Pd(OAc)₂, PPh₃ AgCO₃, MeCN

В

В

	Birla Institute of Tech	nology and Science, Pilani, Rajasthan-3330	31		
I Semester 2022-23	Adv. Org. Chem. (CHEM G551)		Mai	Marks 50	
Comprehensive Exam	(OPEN BOOK)	Time: 2 hr (Room No. 1205)	December	18,	
2023					
NAME:	••••••	ID No:	••••••		

NOTE: Attempt to answer all parts of a question together.

Q1. (a) Rationalizing the structure of A and B with correct stereochemistry. Label any pericyclic processes during this transformation. [5]

(b) Propose a catalytic enantiomeric synthesis of given compound from the corresponding ketone.

(c) Calculate a chiral compound's enantiomeric ratio (er) with an observed rotation of -97.5°. (Given: rotation of enantiomerically pure = -105°). [2]

[3]

Q.2 (a) Predict the correct product C and D for the given transformation and explain the conversion of C to D. [5]

(c) Write the structure of product F for the given transformation and comment on the optical activity of the product if starting material E is optically active. [2]

[4]

[4]

Q3. (a) Propose synthetic steps with reagent and conditions for TM from p-cresol (SM).

(b) Write all synthetic steps for the asymmetric synthesis of H from G using the chiral auxiliary approach. (Choose auxiliary and other reactants yourself).

(c) Write the structure of products (I and J) formed for the given transformations.

Q4. (a) Write the steps for the following conversion while mentioning the reaction sequence.

(b) Complete the following reaction by writing the structure of the products K and L?

6

(c) Draw the mechanistic steps transition state model to justify forming a stable *trans*-coupling product for the Heck-coupling reaction.

[2]

Q5. (a) Predict structures of **M** and **N** for the given transformations. Three-dimensional drawings are recommended. State the reaction conditions and mode of pericyclic reaction in the second step. [1+2+1]

(b) Propose the resolution of the given compound by the method of your choice.

(c) Write the structure of product O and explain its formation through a stepwise reaction mechanism.

[2+1]

7