Birla Institute of Technology and Science, Pilani, Rajasthan 333031 Mid Semester Examination, 2nd Semester, 2017-2018

CHEM G552: Advance Inorganic Chemistry	(Closed Book)	Max. Marks: 30
Time: 90 mins.		Date: 7 th March, 2018

Instructions to the students:

1. There are **four questions** in all. Attempt all the questions.

- 2. Start answering each question on a fresh page. Answer all parts of a question together.
- 3. Write brief answers to the point with proper justifications.

Q.1. (a) In a close packed type crystal structure of CsCl prove that the minimum value of radius rat	io
r^+/r^-) should be 0.732. (r^+ = radius of cation and r^- = radius of anion).	3]
b) Calculate the spin only magnetic moment value of B ₂ and C ₂ molecule. [At. No. of Boron (B) ar	ıd
Carbon (C) are 5 and 6 respectively] [1.5+1.	5]
C) Write the molecular geometry and hybridization of AsCl ₅ , AsCl ₃ and ICl ₃ molecules. [At. No. of A	s,
Cl and I are 33, 17 and 53 respectively][3]	3]
Q.2. (a) Write the symmetry elements present in $[MnCl_4]^{2-}$ and $[Ni(H_2O)_6]^{2+}$ ions.	3]
b) Write the structure of molecules (one for each) that possess C_1 , C_s , C_i , D_{3h} , C_{α_V} and D_{α_h} point group	s.
[3]
c) Using the given character table, answer the following-	
C_{4v} E 2C ₄ C ₂ 2 σ_v 2 σ_d	
A_1 1 1 1 1 1 z $x^2 + y^2, z^2$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
i) What is the order of this character table? [0.	5]

(ii) What is the significance of A, B, and E?

(C)

- (iii) What is the significance of subscript 1 and 2?
- (iv) Which Mullikan symbol represents the IR and Raman active modes? [1]

[1.5]

[1]

Q.3. (a) Draw the molecular orbital diagram of OF molecule with proper labeling of diagram. Which ionic form of this molecule (cationic or anionic) will be more stable? Justify your answer. [At. No. of Oxygen (O) and Fluorine (F) are 8 and 9 respectively] [3+1]
(b) Write the number of crystal system, point group and space group possible in single crystal X-ray diffraction studies? [1.5]
(C) Explain inner and outer orbital complex. Which one is relatively more stable? [1.5]
Q.4. Write short notes on
(a) VSEPR theory
(b) Schottky defect in ionic crystal

5	5
Fajan's Rule(d) p type semiconductor	[1x4]

*******END*******