BITS Pilani, Pilani Campus; Semester-I, 2016-17 CHEM G553 : Advanced Physical Chemistry Comprehensive Examination Part-II (Open book)

Duration: 120 min	Max. Total Marks: 48
Date: December 05, 2016	Time: Afternoon
Useful data: 1 a.m.u.=1.67×10 ⁻²⁷ kg; h=6.626×10 ⁻³⁴ Js; h=1.054×10 ⁻³⁴ Js	

1. Compute the change in the entropy when 20 g of water at 25°C are converted into water vapour at 200°C under constant atmospheric pressure. The specific heats of liquid water and water vapor are 75.315 J K⁻¹mol⁻¹ and (30.09 + 0.00883T) J K⁻¹mol⁻¹, respectively and latent heat of vaporization is 0.414 x10⁵ J mol⁻¹. [10]

2. A reaction mechanism was proposed for photo-decomposition of Cl₂O as under:

$$M(g) + Cl_2O(g) \xleftarrow{k_1}{k_2} Cl_2(g) + O(g) + M(g)$$

 $O(g) + Cl_2O(g) \xrightarrow{k_3} O_2(g) + Cl_2(g)$

Where M is a molecule that can exchange energy with the reacting Cl_2O molecule through collision but does not react. Derive the rate law for $d[Cl_2O]/dt$ assuming that the intermediate O(g)concentration can be treated by the steady state approximation. [10]

3. For some pure substance, the thermodynamic the following data was obtained:

 $\Delta_{\text{fus}} \text{H} = 7 \text{ kJ mol}^{-1}$; and $\Delta_{\text{fus}} \text{S} = 25 \text{ J mol}^{-1} \text{K}^{-1}$.

Calculate the melting point of the substance at the given pressure. Which phase of the substance will be more stable at 273 K if the molar entropies of the solid and the liquid phases are, respectively, 40 J mol⁻¹K⁻¹ and 70 J mol⁻¹K⁻¹, at the given pressure and within the given range of temperatures. (Justify with the proper calculation). **[10]**

4. Which d-type orbitals would you choose to form d²sp³ hybrid orbitals oriented equal and opposite along the three coordinate axes? Assuming that the pure d-type, p-type and s-type atomic orbitals are mutually orthonormal, obtain the expression for the mutually orthonormal d²sp³ hybrid orbitals. **[4+6]**

5. Write a short note (two-three sentences only) for each of the following: [2+2+2+2]
(a) NMR Chemical Shift (b) Chemical potential (c) Angular nodes of a hydrogenic wavefunction
(d) Azeotropic liquid mixture

-----END-----