Birla Institute of Technology \& Science, Pilani, Rajasthan - 333031
Comprehensive Examination (make-up), First Semester, AY: 2017-2018
CHEM G553: Advanced Physical Chemistry,
Time: 60 min. (Total: 180 min.) Part - A (Close Book) Marks: 45 (Max. Marks: 120)

Name:
 ID:
 Marks

There are 15 questions, each of 3 Marks. Attempt all the questions. Pencil should not be used. Don't scribble on the question paper.
Useful date: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$; Velocity of light $=2.998 \times 10^{8} \mathrm{~ms}^{-1}$; Mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$, $1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg}$

1) Are the following function eigenfunctions of the operator $\frac{d^{2}}{d x^{2}}$ and if so, what is the corresponding eigen value? i) sin $(8 x+5)$ and ii) $e^{8 x+5}$
2) What would be the outcome(s) of $\widehat{L_{Z}} \& \widehat{S_{Z}}$ operators on the hydrogen atom $2 \mathrm{p}_{\mathrm{y}}$ orbital. Determine the probability of each outcome(s).
3) 1,4-dihydroxybenzene may exists in three different conformations depending on the dihedral angle $d_{\theta}\left(d_{\theta}=\angle \mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}\right.$). Those three conformers can be represented by (i) $\mathrm{d}_{\theta}=0^{\circ}$, (ii) $\mathrm{d}_{\theta}=$ 90°, and (iii) $d_{\theta}=180^{\circ}$. Comment on rotational activity of the individual conformers.
4) What would be the magnitude of momentum of a particle confined to move in one-dimensional box of length I.
5) Write down three main differences between the fluorescence and phosphorescence.
6) Determine the number of normal mode of vibrations in $X_{2} Y_{2}$ molecule. Also predict the number of stretching mode vibrations in the same molecule.
7) Determine $\Delta_{\mathrm{rxn}} G^{\circ}$ and $\Delta_{\mathrm{rxn}} G$ for the following reaction at $25^{\circ} \mathrm{C}$. $2 \mathrm{CO}(\mathrm{g}, 0.650 \mathrm{bar})+\mathrm{O}_{2}(\mathrm{~g}, 34 \mathrm{bar}) \leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}, 0.0250 \mathrm{bar})$
$\left(\Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{CO}_{2}\right.\right.$ at $\left.25^{\circ} \mathrm{C}\right)=-394.35 \mathrm{~kJ} / \mathrm{mol} ; \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{CO}\right.$ at $\left.\left.25^{\circ} \mathrm{C}\right)=-137.16 \mathrm{~kJ} / \mathrm{mol}\right)$
8) What is the change in entropy when 1 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, boils reversibly at its boiling point of $80.1^{\circ} \mathrm{C}$ and a constant pressure of 1 atm . The heat of vaporization of benzene is $395 \mathrm{~J} / \mathrm{g}$.
9) "Change in entropy upon heating will be greater when the energy is transferred to a cold body than when it is transferred to a hot body" - Explain this statement in brief using the concept of statistical view of entropy.
10) Write down the expression for K^{0} for: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
11) Consider an ideal gas undergoes an isothermal change of state from pressure P_{i} to P_{f}. Fill in the blank: $\mu\left(\mathrm{T}, \mathrm{P}_{\mathrm{f}}\right)=\ldots \ldots \ldots$. \qquad
12) The integrated rate law for a 2 nd order reaction of the type $A \rightarrow P$ is
13) The rate of reaction for $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is given by (in terms of all the components)
14) Determine f for a system consisting of solid 1,4-dihydroxybenzene in equilibrium with an aqueous solution of 1,4-dihydroxybenzene.
15) The chemical shift of the CH_{3} protons in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Y}$ is $\delta=1.56$ and that of the CH_{2} protons is 3.76 . What is the difference in local magnetic field between two regions of the molecule when the applied field is 16.5 T ?
