Birla Institute of Technology \& Science, Pilani, Rajasthan - 333031

Comprehensive Examination, First Semester, AY: 2017-2018
CHEM G553: Advanced Physical Chemistry,
Time: 60 min. (Total: 180 min.) Part - A (Close Book) Marks: 45 (Max. Marks: 120)

Name:
 ID:
 Marks

There are 15 questions, each of 3 Marks. Attempt all the questions. Pencil should not be used. Don't scribble on the question paper.
Useful date: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$; Velocity of light $=2.998 \times 10^{8} \mathrm{~ms}^{-1}$; Mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$, $1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg}$

1) Are the following function eigenfunctions of the operator $\frac{d^{2}}{d x^{2}}$ and if so, what is the corresponding eigen value? i) cos $(3 x+5)$ and ii) $e^{3 x+5}$
2) What would be the outcome(s) of $\widehat{L_{Z}}$ operator on the following hydrogen atom orbital. Determine the probability of each outcome(s).
$\psi=\frac{1}{81 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(Z r / a_{0}\right)^{2} \exp \left(-Z r / 3 a_{0}\right) \sin ^{2} \theta \sin 2 \phi$
3) $\mathrm{H}_{2} \mathrm{O}_{2}$ may exists in three different conformations depending on the dihedral angle $\mathrm{d}_{\theta}\left(\mathrm{d}_{\theta}=\angle \mathrm{H}-\right.$ $\mathrm{O}-\mathrm{O}-\mathrm{H}$). Those three conformers can be represented by (i) $\mathrm{d}_{\theta}=0^{\circ}$, (ii) $\mathrm{d}_{\theta}=90^{\circ}$, and (iii) $\mathrm{d}_{\theta}=$ 180°. Comment on rotational activity of the individual conformers.
4) Write down the form of the Hamiltonian for a particle having mass m confined to move in onedimensional box of length I.
5) Write down three main differences between the fluorescence and phosphorescence.
6) Determine the number of normal mode of vibration in $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{D}_{2} \mathrm{O}_{2}$ molecule.
7) If an electric motor produced 25 kJ of energy each second as mechanical work and lost 2 kJ as heat to the surroundings per seconds. Determine the change in the internal energy of the motor each second.
8) Obtain an expression for the entropy change of a sample of perfect gas when it expands isothermally from a volume V_{i} to a volume V_{f}.
9) "Change in entropy upon heating will be greater when the energy is transferred to a cold body than when it is transferred to a hot body" - Explain this statement in brief using the concept of statistical view of entropy.
10) Write down the expression for K^{0} for: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
11) Consider an ideal gas undergoes an isothermal change of state from pressure P_{1} to P_{2}. Fill in the blank: $\mu\left(\mathrm{T}, \mathrm{P}_{2}\right)=$ \qquad $+$ \qquad
12) The unit of the rate constant of a zero order reaction is
13) The rate of reaction for $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is given by (in terms of all the components)
14) Determine f for a system consisting of solid glucose in equilibrium with an aqueous solution of glucose.
15) The chemical shift of the CH_{3} protons in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Y}$ is $\delta=1.26$ and that of the CH_{2} protons is 3.46. What is the difference in local magnetic field between two regions of the molecule when the applied field is 19.5 T ?
