Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 Mid-Semester Test, First Semester, AY: 2017-2018 CHEM G553: Advanced Physical Chemistry

ne: 90) minutes Max. Marks	5: 90
There are six questions. Attempt all the questions. Pencil should not be used. Don't scribble on the question paper. Useful date: $h = 6.63 \times 10^{-34} J$ s; Velocity of light = 2.998 X 10 ⁸ ms ⁻¹ ; Mass of the electron = 9.1 × 10 ⁻³¹ kg, 1 amu = 1.66054 × 10 ⁻²⁷ kg		
(a)	Show that a function x^k is an eigen function of the operator, $\hat{\boldsymbol{\theta}} = [a + bx(\frac{d}{dx})]$, where k, a, and b	[6]
	are constants. What is the eigen value? Is the function $f(x) = x^3 + 3x$ an eigen function of the given operator?	
(b)	In an X-ray photoelectron experiment, a photon of wavelength 150 pm ejects an electron from the inner shell of an atom and it emerges with a speed of 21.4×10^6 m/s. Calculate the binding energy of the electron in louis	[5]
(c)	Which of the following expressions are acceptable wave functions? Briefly justify (i) $\Psi = x^2 + 1$, where x can have any value (ii) $\Psi = 1/(4-x)$; $0 \le x \le 3$	[4]
(a)	A particle of mass m is confined to move in two dimension. The potential energy V = 0 for $0 \le x \le L_1$, $0 \le y \le L_2$ and V = \propto elsewhere. Answer the following questions:	
(i)	Write down the form of the normalized wave function for the particle.	[3]
(ii)	Write down the expression for energy of the particle.	[3]
(iii)	Consider, $L_1 = L$ and $L_2 = 2L$. Show that there is a degeneracy between the states $ 1,4\rangle$ and	[6]
	2,2⟩.	
(b)	What is the magnitude of the momentum of a free particle having momentum eigen function, $\psi = e^{i4x}$?	[3]
(a)	Determine the normalization constant, N, for the wave function $\Psi(\phi)$ for particle of mass m on a ring which is having the form, $\Psi(\phi) = Ne^{im\phi}$.	[6]
(b)	Evaluate the magnitude of angular momentum associated with the particle of mass m as described in the previous question. Wave function of the particle is $\Psi(\phi)$ = Ne ^{imϕ}	[3]
(c)	Consider a diatomic molecule, ${}^{1}H^{35}CI$. The force constant of the bond is k_{f} =516.3 N m ⁻¹ . Determine the frequency of the oscillation for ${}^{1}H^{35}CI$. Determine the energy separation between the v = 0 and v = 1 states.	[6]
(a)	Orbital angular momentum quantum number of a rigid rotor, represented in the Figure, is ' <i>I</i> . Answer the following	[1]
	ne: 90 are si al date (a) (b) (c) (a) (i) (ii) (iii) (b) (a) (b) (c) (a) (c) (a) (c) (a)	 Max. Marks the series of the seri

- (i) Magnitude of slant height, **p**, of the total angular momentum vector 'L'.
- (ii) Magnitude of the altitude, q.
- (iii) How many values are possible for *q*.
- (iv) Why the vector L lie on the surface of a cone? Explain in one or two sentences.
- (b) Consider an electron in the $3p_x$ orbital of H-atom. Answer the following questions:
- (i) What would be outcome(s) of the $\widehat{L_Z}$ operator? Do mention the probability of each outcome(s). [3]
- (ii) What would be the value(s) of spin magnetic quantum number of the electron?

[1]

[1]

[2]

[2]

- (c) Fluorescence emission spectra of molecules in the solution are in general independent of the [2] excitation wavelength. Explain briefly.
- (d) The molar absorption coefficient of solute at 540 nm is 286 dm³ mol⁻¹ cm⁻¹. When light of that [3] wavelength passes through a 6.5 mm cell containing a solution of the solute, 46.5 percent of light absorbed. What is the concentration of the solution?
- **5** (a) Normalize the molecular orbital, $\varphi = \psi_A + \lambda \psi_B$ in terms of the parameter λ and the overlap integral [4] S.
 - (b) Arrange the species O₂⁺, O₂, O₂⁻, and O₂²⁻ in order of increasing bond order. Do mention the [6] bond order of each species. What is the spin state of ground state O2 molecule?
 - (c) The lowest observed microwave absorption frequency of ${}^{12}C^{16}O$ [Reduced mass, $\mu = 1.13850$ [5] $\times 10^{-26}$ kg] is 115271 MHz. Compute (a) bond distance in ${}^{12}C^{16}O$ and (b) predict the next two lowest microwave absorption frequencies of ${}^{12}C^{16}O$.
- 6 (a) Symmetric stretch vibration of CO₂ is IR-inactive. Explain briefly. [2]
 Can you measure the frequency of the same mode using any spectroscopic method? Explain [2]
 you answer.
 - (b) A transition is observed at 3185 cm⁻¹ while recording vibrational spectrum of water. Other transitions, appeared at 3760 cm⁻¹ (anti-symmetric stretch), 3650 cm⁻¹ (symmetric stretch), and 1600 cm⁻¹ (bending). Answer the following questions:
 - (i) Determine the zero-point vibration energy of water.
 - (ii) Assign the transition observed at 3185 cm⁻¹.
 - (c) Calculate resonance frequency for proton in a 12.0 T magnetic field. γ_N is 2.6752 × 108 T⁻¹ s⁻¹. [3]
 - (d) Consider a nucleus with δ =1.00 in a 500 MHz NMR spectrometer. Calculate the shift of the [3] nucleus relative to the reference. What would be the shift in 100 MHz instrument?

[3]

[2]