Birla Institute o	of Technology & Science, Pilani, Rajasthan 333	031
	First Semester 2022-2023	
Course Number: CHEM G553	Course Title: Advanced Physical Chemistry	Marks: 25
Comprehensive Examination	Date: 26 th December, 2022	Time: 120 mins.
	(CLOSED BOOK)	

Useful Data: Given are commonly used values, notations have usual meanings; $m_e = 9.109 \times 10^{-31} \text{ kg}$, $h = 6.626 \times 10^{-34} \text{ Js}$, $e = 1.602 \times 10^{-19} \text{ C}$, $R_H = 109680 \text{ cm}^{-1} \text{ c} = 2.998 \text{ x} 10^8 \text{ ms}^{-1}$, $\text{I J} = 1 \text{ kg m}^2 \text{ s}^{-2}$, $m_H = 1.008 \text{ amu}$; $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; $0 \text{ K} = -273 \text{ }^{o}\text{C}$; Boltzmann constant , $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$; $1 \text{ amu} = 1.6605 \times 10^{-27} \text{ kg}$; $c = 3.0 \times 10^8 \text{ ms}^{-1}$; $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

Q. 1. (a) A photochemical reaction, $A \rightarrow B + C$, the quantum efficiency with 550 nm light is $1.2 \times 10^2 mol$ einstein⁻¹. After exposure of 180 mmol A to the light, 1.5 mmol B is formed. The number of moles of photons absorbed by A is, [3M]

(A) 1.5×10^{-5}	einstein	(B) 1.25×10^{-5}	['] einstein
(C) 1.5	einstein	(D) 80000	einstein

(b) Suppose the reaction $A \rightarrow B$ is driven by light absorption and that its rate is I_a , but the reverse reaction $B \rightarrow A$ is bimolecular and second-order with a rate $k[B]^2$. So, for the 'photostationary state' find which of the following statement is correct? [2M]

(A)
$$[B] = \left(\frac{k}{I_a}\right)^{\frac{1}{2}}$$
 (B) $[B] = \left(\frac{k}{I_a}\right)^2$ (C) $[B] \propto A^{\frac{1}{2}}$ (D) $[B] \propto A^{-\frac{1}{2}}$

(c) Which one of the following statements is correct regarding the kinetic chain length (λ) in chain polymerization? [2M]

(A)
$$\lambda = \frac{number}{number} \frac{of}{of} \frac{activated}{monomer} \frac{centres}{units} \frac{produced}{consumed}$$
 (B) $\lambda = \frac{rate}{number} \frac{of}{of} \frac{propagation}{monomer} \frac{of}{units} \frac{chains}{consumed}$
(C) $\lambda = \frac{rate}{number} \frac{of}{of} \frac{production}{activated} \frac{of}{centres} \frac{radicals}{produced}$ (D) $\lambda = \frac{rate}{rate} \frac{of}{of} \frac{propagation}{production} \frac{of}{of} \frac{chains}{radicals}$

- **Q.2.** (a) Show that two sp² orbitals on the same atom are orthogonal. Given the expressions of the two sp² orbitals are $\Psi_{I} = s + (3/2)^{\frac{1}{2}} P_{x} (1/2)^{\frac{1}{2}} P_{y}$ and $\Psi_{II} = S (3/2)^{\frac{1}{2}} P_{x} (1/2)^{\frac{1}{2}} P_{y}$ (where the terms have usual meaning). [3M]
 - (b) Write all possible terms for ground state and first excited state of magnesium (At. No = 12).

[**3**M]

(c) Fill up the table below predicting the electronic configuration of Na, N and O atoms in NaNO₂ and NaNO₃.
Briefly comment on your result. [2+1=3M]

Molecule/atoms	Na	Ν	0
NaNO ₂			
NaNO ₃			

- (d) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp is directed to a sample of krypton, electrons are ejected with a speed of 1.59×10^6 m/s. Calculate the ionization energy of krypton (in eV). [3M]
- **Q.3.** Isotopic substitution changes the rotational energy levels of a molecule. This phenomenon can be used for precise evaluation of the atomic weight of isotopes. The first line (J = 0) in the pure rotational spectrum of ${}^{12}C^{16}O$ and ${}^{13}C^{16}O$ are found to be 3.84235 and 3.67337 cm⁻¹, respectively. Calculate the precise atomic weight of ${}^{13}C$ given that the precise atomic weight of ${}^{16}O$ is 15.9994 and that of ${}^{12}C$ is 12.011. (Consider the molecules as rigid rotor and isotopic substitution does not affect the bond length).

END

[6M]

	Birla Ins	stitute of Technology & Science, Pilani, Rajasthan 333 031	
		First Semester 2022-2023	
Course Number: CHEM	G553	Course Title: Advanced Physical Chemistry	Marks: 15
Comprehensive Examinat	tion	Date: 26 th December, 2022	Time: 60 mins.
-		(OPEN BOOK)	

Useful Data: Given are commonly used values, notations have usual meanings; $m_e = 9.109 \times 10^{-31} \text{ kg}$, $h = 6.626 \times 10^{-34} \text{ Js}$, $e = 1.602 \times 10^{-19} \text{ C}$, $R_{H=} 109680 \text{ cm}^{-1} \text{ c} = 3 \times 10^8 \text{ ms}^{-1}$, I J = 1 kg m² s⁻², $m_H = 1.008 \text{ amu}$; $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; $0 \text{ K} = -273 \ ^{o}\text{C}$; Boltzmann constant, $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$; $1 \text{ amu} = 1.6605 \times 10^{-27} \text{ kg}$; $c = 3.0 \times 10^8 \text{ ms}^{-1}$

- **Q.1.** (a) The molecule A has two conformations (A_I and A_{II}) separated by an energy difference of 5 kJmol⁻¹ with A_{II} being the high energy conformation. Calculate the relative population of A_I and A_{II} (i.e., $N_{A_{II}}/N_{A_I}$) at (i) 100 K (ii) 200 K and (iii) 300 K, and comment on the variation in the relative population with temperature in one sentence. [3M]
- (b) Calculate the two possible energies of the ¹H nuclear spin in a uniform magnetic field of 5.50 T. Also calculate the ratio of populations of these two states in equilibrium at 300 K. (Given the ¹H nuclear g factor $g_N = 5.5854$ and nuclear magneton $\mu_N = 5.051 \times 10^{-27} \text{ JT}^{-1}$). [3M]
- **Q.2.** (a) Consider the chemical reaction for the formation of 1 mole of H₂O. Complete the following thermodynamic table, and with the help of the table predict whether the reaction is spontaneous at T = 298 K. Explain the physical significance of the 'T Δ S⁰' product in one sentence. At T= 298 K, the thermodynamic quantities are: [2M]

Thermodynamic Quantity	\mathbf{H}_2	0.5 O ₂	H ₂ O	ΔH^0 and ΔS^0
Enthalpy (H ⁰ /kJ)			-285.83	
Entropy (S ⁰ /JK ⁻¹)	130.68	102.57	69.91	

- (b) One mole of He is mixed with 2 moles of Ne, both at the same temperature and pressure. Calculate ΔS for the process if the total volume remains constant. [3M]
- (c) A compound having molecular formula $C_4H_8O_2$ gives the following spectral data and respond to iodoform test.
- (i) IR Absorption peaks (ii) ¹HNMR data when dissolved in CDCl₃
- (a) Sharp peak at 1720 cm⁻¹ (a) A doublet at δ 1.35
- (b) Broad peak at 3300 cm⁻¹ (b) A sharp singlet at δ 2.15
 - (c) A broad singlet at δ 3.75

(d) A quartet at δ 4.25.

From the above information, propose a structure for the compound and assign all the spectral data given. [0.5x6 + 1 = 4M]

END