Birla Institute of Technology \& Science, Pilani, Rajasthan 333031

First Semester 2022-2023

Course Number: CHEM G553
Comprehensive Examination

Course Title: Advanced Physical Chemistry
Marks: 25
Date: 26 ${ }^{\text {th }}$ December, 2022
(CLOSED BOOK)
Useful Data: Given are commonly used values, notations have usual meanings; $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=$ $6.626 \times 10^{-34} \mathrm{~J}, e=1.602 \times 10^{-19} C, R_{H}=109680 \mathrm{~cm}^{-1} \mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}, \mathrm{I} \mathrm{J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}, m_{H}=$ $1.008 \mathrm{amu} ; R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 0 \mathrm{~K}=-273{ }^{\circ} \mathrm{C}$; Boltzmann constant, $k=1.381 \times 10^{-23} \mathrm{JK}^{-1}$; $1 \mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg} ; c=3.0 \times 10^{8} \mathrm{~ms}^{-1} ; 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
Q. 1. (a) A photochemical reaction, $A \rightarrow B+C$, the quantum efficiency with 550 nm light is $1.2 \times 10^{2} \mathrm{~mol}$ einstein ${ }^{-1}$. After exposure of $180 \mathrm{mmol} A$ to the light, $1.5 \mathrm{mmol} B$ is formed. The number of moles of photons absorbed by A is,
[3M]
(A) 1.5×10^{-5} einstein
(B) 1.25×10^{-5} einstein
(C) 1.5 einstein
(D) 80000 einstein
(b) Suppose the reaction $A \rightarrow B$ is driven by light absorption and that its rate is I_{a}, but the reverse reaction $B \rightarrow A$ is bimolecular and second-order with a rate $k[B]^{2}$. So, for the 'photostationary state' find which of the following statement is correct?
[2M]
(A) $[B]=\left(\frac{k}{I_{a}}\right)^{1 / 2}$
(B) $[B]=\left(\frac{k}{I_{a}}\right)^{2}$
(C) $[B] \propto A^{1 / 2}$
(D) $[B] \propto A^{-1 / 2}$
(c) Which one of the following statements is correct regarding the kinetic chain length (λ) in chain polymerization?
[2M]
(A) $\lambda=\frac{\text { number }}{\text { number }} \frac{\text { of }}{\text { of }} \frac{\text { activated }}{\text { monomer }} \frac{\text { centres }}{\text { units }} \frac{\text { produced }}{\text { consumed }}$
(B) $\lambda=\frac{\text { rate }}{\text { number }} \frac{\text { of }}{\text { of }} \frac{\text { propagation }}{\text { monomer }} \frac{\text { of }}{\text { units }} \frac{\text { chains }}{\text { consumed }}$
(C) $\lambda=\frac{\text { rate }}{\text { number }} \frac{\text { of }}{\text { of }} \frac{\text { production }}{\text { activated }} \frac{\text { of }}{\text { centres }} \frac{\text { radicals }}{\text { produced }}$
(D) $\lambda=\frac{\text { rate }}{\text { rate }} \frac{\text { of }}{\text { of }} \frac{\text { propagation }}{\text { production }} \frac{\text { of }}{\text { of }} \frac{\text { chains }}{\text { radicals }}$
Q.2. (a) Show that two sp^{2} orbitals on the same atom are orthogonal. Given the expressions of the two sp^{2} orbitals are $\Psi_{\mathrm{I}}=\mathrm{s}+(3 / 2)^{1 / 2} \mathrm{P}_{\mathrm{x}}-(1 / 2)^{1 / 2} \mathrm{P}_{\mathrm{y}}$ and $\Psi_{\mathrm{II}}=\mathrm{S}-(3 / 2)^{1 / 2} \mathrm{P}_{\mathrm{x}}-(1 / 2)^{1 / 2} \mathrm{P}_{\mathrm{y}}$ (where the terms have usual meaning).
(b) Write all possible terms for ground state and first excited state of magnesium (At. No = 12).
(c) Fill up the table below predicting the electronic configuration of Na, N and O atoms in NaNO_{2} and NaNO_{3}.

Briefly comment on your result.

Molecule/atoms	Na	N	O
NaNO_{2}			
NaNO_{3}			

(d) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp is directed to a sample of krypton, electrons are ejected with a speed of $1.59 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Calculate the ionization energy of krypton (in eV).
Q.3. Isotopic substitution changes the rotational energy levels of a molecule. This phenomenon can be used for precise evaluation of the atomic weight of isotopes. The first line $(\mathrm{J}=0)$ in the pure rotational spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ and ${ }^{13} \mathrm{C}^{16} \mathrm{O}$ are found to be 3.84235 and $3.67337 \mathrm{~cm}^{-1}$, respectively. Calculate the precise atomic weight of ${ }^{13} \mathrm{C}$ given that the precise atomic weight of ${ }^{16} \mathrm{O}$ is 15.9994 and that of ${ }^{12} \mathrm{C}$ is 12.011 . (Consider the molecules as rigid rotor and isotopic substitution does not affect the bond length).

Birla Institute of Technology \& Science, Pilani, Rajasthan 333031

First Semester 2022-2023

Course Number: CHEM G553 Comprehensive Examination

Course Title: Advanced Physical Chemistry
Date: 26 ${ }^{\text {th }}$ December, 2022

Marks: 15
Time: 60 mins.

Useful Data: Given are commonly used values, notations have usual meanings; $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34}$ $J s, e=1.602 \times 10^{-19} C, R_{H}=109680 \mathrm{~cm}^{-1} \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \mathrm{I} \mathrm{J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}, m_{H}=1.008 \mathrm{amu} ; R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$; $0 \mathrm{~K}=-273{ }^{\circ} \mathrm{C} ; \quad$ Boltzmann constant,$k=1.381 \times 10^{-23} \mathrm{JK}^{-1} ; \quad 1 \mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg} ; \quad c=3.0 \times$ $10^{8} \mathrm{~ms}^{-1}$
Q.1. (a) The molecule A has two conformations (A_{I} and $\mathrm{A}_{\text {II }}$) separated by an energy difference of 5 kJmol^{-1} with $\mathrm{A}_{\text {II }}$ being the high energy conformation. Calculate the relative population of A_{I} and $\mathrm{A}_{\text {II }}$ (i.e., $N_{A_{I I}} / N_{A_{I}}$) at (i) 100 K (ii) 200 K and (iii) 300 K , and comment on the variation in the relative population with temperature in one sentence.
[3M]
(b) Calculate the two possible energies of the ${ }^{1} \mathrm{H}$ nuclear spin in a uniform magnetic field of 5.50 T . Also calculate the ratio of populations of these two states in equilibrium at 300 K . (Given the ${ }^{1} \mathrm{H}$ nuclear g factor $g_{N}=5.5854$ and nuclear magneton $\mu_{N}=5.051 \times 10^{-27} \mathrm{JT}^{-1}$).
[3M]
Q.2. (a) Consider the chemical reaction for the formation of 1 mole of $\mathrm{H}_{2} \mathrm{O}$. Complete the following thermodynamic table, and with the help of the table predict whether the reaction is spontaneous at $T=298 \mathrm{~K}$. Explain the physical significance of the ' $\mathrm{T} \Delta \mathrm{S}^{0}$ ' product in one sentence. At $\mathrm{T}=298 \mathrm{~K}$, the thermodynamic quantities are:
[2M]

Thermodynamic Quantity	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{0 . 5} \mathbf{O}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	$\Delta \mathbf{H}^{\mathbf{0}}$ and $\Delta \mathbf{S}^{\mathbf{0}}$
Enthalpy $\left(\mathrm{H}^{0} / \mathrm{kJ}\right)$	------	------	-285.83	------
Entropy $\left(\mathrm{S}^{\mathbf{0}} / \mathrm{JK}^{-1}\right)$	130.68	102.57	69.91	-----

(b) One mole of He is mixed with 2 moles of Ne , both at the same temperature and pressure. Calculate $\Delta \mathrm{S}$ for the process if the total volume remains constant.
[3M]
(c) A compound having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ gives the following spectral data and respond to iodoform test.
(i) IR Absorption peaks
(a) Sharp peak at $1720 \mathrm{~cm}^{-1}$
(b) Broad peak at $3300 \mathrm{~cm}^{-1}$
(ii) ${ }^{1}$ HNMR data when dissolved in CDCl_{3}
(a) A doublet at $\delta 1.35$
(b) A sharp singlet at $\delta 2.15$
(c) A broad singlet at $\delta 3.75$
(d) A quartet at $\delta 4.25$.

From the above information, propose a structure for the compound and assign all the spectral data given.

$$
[0.5 \times 6+1=4 M]
$$

END

