# Birla Institute of Technology \& Science, Pilani, Rajasthan - 333031 <br> First Semester, 2023-2024 

## CHEM G553 Advanced Physicsl Chemistry

| Mid-Sem Time: 90 mins. Date: 12.10 .2023 | [60 M] |
| :--- | :--- | :--- |

Useful information: $\mathrm{R}_{\mathrm{H}}=109680 \mathrm{~cm}^{-1} ; 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{j} ; \mathrm{h}=6.626 \times 10^{-34} ; \mathrm{me}=9.11 \times 10^{-31} \mathrm{~kg}$;
Q1. (a) (i) The work function for Na metal is 1.82 eV . Calculate vo for Na? [2]
(ii) Using Balmer's formula, calculate the wavelengths of the first two lines of the visible region of the hydrogen atom spectrum.
(b) An electron is confined in a square box of length L. (i) What would be the form of the wavefunction in the first four energy levels? (ii) Are there any degenerate states within the first four energy levels? (iii) What is the energy difference between the second and fourth energy levels with the side of the square box of $1 \AA$ ? (iv) What would be the form of the timedependent wavefunction of the electron in the ground state?
[10]
Q2. (a) (i) Write down the Schrödinger equation for a simple harmonic oscillator in onedimension. (ii) Confirm that the wavefunction, $\Psi=N_{0} \exp ^{\left(-x^{2} / 2 \alpha^{2}\right)}$ (where, $\alpha=\left\{\frac{\hbar^{2}}{m k_{f}}\right\}^{1 / 4}$ ) is a solution of the Schrödinger equation. All parameters are having the usual meaning. (iii) Determine the energy of the state that is represented by the above wavefunction.
[7]
(b) Consider an electron in the $2 p_{y}$ orbital of H -atom. What would be the outcome of: (i) Energy operator ( $\widehat{H}$ ), (ii) Angular momentum operator ( $\hat{L}$ ), (iii) Z-Component of the angular momentum operator ( $\widehat{L_{Z}}$ ), and (iv) Z-component of the spin operator $\left(\widehat{S_{Z}}\right)$.
[5]
(c) Write down all possible spin functions for $1 s_{2}$ electronic configuration. Determine the ground state spin function for the same electronic configuration.
Q3. (a) Normalize the molecular orbital, $\varphi=\psi_{1}+\lambda \psi_{2}$ in terms of the parameter $\lambda$ and the overlap integral S.
(b) Show that the linear combinations $h_{1}=s+p_{x}+p_{y}+p_{z}$ and $h_{z}=s-p_{x}-p_{y}+p_{z}$ are mutually orthogonal.
(c) What is the speed of a photoelectron ejected from a molecule with radiation energy of 21 eV and known to come from an orbital of ionisation energy of 12 eV ?
[3]
(d) Which of the following has a higher dissociation energy? (i) $\mathrm{F}_{2}$ and (ii) $\mathrm{F}_{2}{ }^{+}$. [2]
(e) How will you distinguish between $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{NH}_{2}$ using IR spectroscopy? State roughly the region of the IR spectrum (in $\mathrm{cm}^{-1}$ ) where the characteristic absorption for the distinguishing peak will occur. What would be the expected peak position of the same vibration mode in $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{ND}_{2}$ ? Justify your answer in brief.
(f) In general, emission spectrum is red-shifted compared to the excitation spectrum. Comment using an energy level diagram.
Q4. (a) (i) 1,4-dihydroxy benzene may exist in three different conformers depending on the dihedral angle ( $d_{\theta}=\angle \mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$ ). Dihedral angle of those three conformers are $\mathrm{d}_{\theta}=0^{\circ}$ (Conformer-I), $\mathrm{d}_{\theta}=90^{\circ}$ (Conformer-II), and $\mathrm{d}_{\theta}=180^{\circ}$ (Conformer-III). Comment on rotational activity of each of the conformers with proper justification. (ii) Determine the number of stretching mode of vibrations for 1,4-dihydroxy benzene molecule. (iii) Which conformer(s) may exhibit both vibrational and vibrational Raman transitions? Proper justification is mandatory.
(b) Consider an electronic transition from the ground state (wavefunction, $\Psi$ ) to the excited state (wavefunction, $\Psi^{\prime}$ ). Derive the expressions for (i) Orbital section rule, (ii) spin selection rule, and (iii) Franck-Condon factor.

