Birla Institute of Technology & Science, Pilani, Rajasthan - 333 031 First Semester, 2023-2024

First Semester, 2023-2024		
Mid Com		dvanced Physicsl Chemistry
Mid-Sem	Time: 90 mins.	Date: 12.10.2023 [60 M]
		$= 1.602 \times 10^{-19}$ J; h = 6.626×10^{-34} ; me = 9.11×10^{-31} kg;
		netal is 1.82 eV. Calculate v_0 for Na? [2]
	nydrogen atom spectrum.	the wavelengths of the first two lines of the visible [3]
_		box of length L. (i) What would be the form of the
``	•	vels? (ii) Are there any degenerate states within the
	• •	ne energy difference between the second and fourth
		box of 1Å? (iv) What would be the form of the time-
dependent wa	vefunction of the electron	in the ground state? [10]
Q2. (a) (i) V	/rite down the Schröding	er equation for a simple harmonic oscillator in one-
		Function, $\Psi = N_0 \exp^{(-x^2/2\alpha^2)}$ (where, $\alpha = \left\{\frac{\hbar^2}{mk_f}\right\}^{1/4}$) is a
		All parameters are having the usual meaning. (iii)
	e .	represented by the above wavefunction. [7]
(b) Consider	an electron in the $2p_y$ o	rbital of H-atom. What would be the outcome of:
		nentum operator (\hat{L}), (iii) Z-Component of the angular
-		mponent of the spin operator (\widehat{S}_{Z}) . [5]
		ions for $1s_2$ electronic configuration. Determine the
-	spin function for the same	-
		I, $\phi = \psi_1 + \lambda \psi_2$ in terms of the parameter λ and the
overlap integr		[2]
mutually ortho		$h_1 = s + p_x + p_y + p_z$ and $h_2 = s - p_x - p_y + p_z$ are
,	5	[3] n ejected from a molecule with radiation energy of 21
• •		of ionisation energy of 12 eV? [3]
		dissociation energy? (i) F_2 and (ii) F_2^+ . [2]
		H_5 -CH ₂ -NH ₂ and C ₆ H ₅ -CO-NH ₂ using IR spectroscopy?
State roughly	the region of the IR spect	rum (in cm ⁻¹) where the characteristic absorption for
-		t would be the expected peak position of the same
	e in C ₆ H ₅ -CO-ND ₂ ? Justify	
	· · · · · · · · · · · · · · · · · · ·	red-shifted compared to the excitation spectrum.
	ng an energy level diagran	
		exist in three different conformers depending on the
-	• •	edral angle of those three conformers are $d_{\theta} = 0^{\circ}$
	•	II), and $d_{\theta} = 180^{\circ}$ (Conformer-III). Comment on prmers with proper justification. (ii) Determine the
	-	ns for 1,4-dihydroxy benzene molecule. (iii) Which
	-	tional and vibrational Raman transitions? Proper
justification is	•	
•		The ground state (wavefunction, Ψ) to the excited
		ressions for (i) Orbital section rule, (ii) spin selection
mula and (III)	Fuenda Candan featan	

rule, and (iii) Franck-Condon factor.