Comprehensive Examination (Open Book)
 Time: 120 mins.

[50 M]
Q1. (a) Consider a particle in a cubic box in a state with an energy of $\frac{14}{3}$ times that of the lowest level. What is the degeneracy of the state?
(b) An emission line from the first excited state of K atoms is found to have two closely spaced components, one at 766.70 nm and the other at 770.11 nm . Determine the splitting in terms of cm^{-1} and explain the observation in terms of the energy levels.
(c) Write the expression for the radial distribution function of a 3 s electron in a hydrogen atom of atomic number Z. Determine the number of locations at which the electron is most likely to be found.
Q2. (a) The B_{0} value of $1.923601 \mathrm{~cm}^{-1}$ is obtained from the rotational Raman spectrum of ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$. The ro value for ${ }^{14} \mathrm{~N}_{2}$ is $1.100105 \AA$.
(i) Calculate the bond length (r_{0}) for ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$.
(ii) Compare and comment on r_{0} values of ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}_{2}$.
(iii) Comment on the r_{e} values of ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}_{2}$.
(iv) Would there be an intensity alteration in the spectrum of ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$ compared to that of ${ }^{14} \mathrm{~N}_{2}$?
(v) What would be the intensity of the rotational spectrum for ${ }^{14} \mathrm{~N}^{15} \mathrm{~N}$?
(b) The chemical shift of the CH_{3} protons in diethyl ether is $\delta=1.16$ and that of the CH_{2} protons is 3.36. What is the difference in the local magnetic field between the two regions of the molecule in the presence of an applied magnetic field of 20 T ?
Q3. (a) A sample consisting of 2.0 mol of $\mathrm{CaCO}_{3}(\mathrm{~s})$ was heated to $800{ }^{\circ} \mathrm{C}$, when it was decomposed. The heating was carried out in a container fitted with a piston that was initially resting on the solid. Calculate the work done during the complete decomposition at 1.0 atm . What work would be done if instead of having a piston the container was open to the atmosphere?
(b) A sample consisting of 2.0 mol of perfect gas molecules, for which $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=(5 / 2) \mathrm{R}$, initially at $p_{1}=111 \mathrm{kPa}$ and $\mathrm{T}_{1}=277 \mathrm{~K}$, is heated reversibly to 356 K at constant volume. Calculate the final pressure, $\Delta \mathrm{U}, \mathrm{q}$, and w .
(c) Calculate $\Delta \mathrm{S}$ for the system when the state of 2.0 mol of diatomic perfect gas molecules is changed from $25^{\circ} \mathrm{C}$ and 1.50 atm . to $135^{\circ} \mathrm{C}$ and 7.0 atm .
Q4. (a) Calculate $\Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \Delta \mathrm{A}$, and $\Delta \mathrm{G}$ for the following change in the state of 2.50 mol of a perfect monoatomic gas with $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=(3 / 2) \mathrm{R}$ for $(28.5 \mathrm{~L}, 400 \mathrm{~K} \rightarrow 42 \mathrm{~L}, 400 \mathrm{~K})$.
(b) For an ideal gas reaction, $A+B \rightleftharpoons C$, a mixture with $n_{A}=1.0 \mathrm{~mol}, \mathrm{n}_{\mathrm{B}}=3.0 \mathrm{~mol}$, and n_{C} $=2.0 \mathrm{~mol}$ is at equilibrium at 300 K and 1.0 bar. The pressure is isothermally increased to 2.0 bar; find the new equilibrium amounts.
[5]
Q5. (a) For the mechanism: $A+B \rightarrow C+D ; 2 C \rightarrow F ; F+B \rightarrow 2 A+G$. (i) Write the stoichiometric number of each step and the overall reaction. (ii) Classify each species as reactant, product, intermediate, or catalysis.
(b) The first order reaction $2 \mathrm{~A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$ is 35% complete after 325 s . How long it will take for the reaction to be 70% complete?
(c) If the reaction $A \rightarrow$ products is zero-order, sketch [A] versus t with justification.

