CS F111 - Computer Programming

Mid Semester Examination

04/01/2022

Name:

Instructions:

- Write the answers only in the space provided. Don't let your answers flow outside the boxes.
- The marking is binary. No marks will be given for partially correct answers.
- Over-written answers of any kind will not be accepted for rechecks.
- Wherever there is a semi colon against a blank, you are supposed to write only one C statement. No marks will be awarded wherever multiple statements are written for such questions.

Recheck request (Write question number only)

1. Let R1 and R2 be two 4-bit integers in 2's complement form. For the operation R1 +R 2 , which one of the following values of R1 and R2 gives an arithmetic overflow? Justify your answer by working out each of the following scenarios. $\mathbf{2 + 2}=\mathbf{4 M}$
A. $\mathrm{R} 1=0011, \mathrm{R} 2=0110$
B. $R 1=1001, R 2=1011$
A.
B.
2. Convert 87.75 in IEEE 32-bit Floating Point Representation \& encode it to hexadecimal. Work out all the steps. 4M
3. What are three different levels of programming languages? 3M

4. The compilation stage that gives machine code is \qquad 1M
5. Draw a flowchart for checking if a number \boldsymbol{n} entered by the user is a composite number or not. $\mathbf{5 M}$
\square
6. What is the output of the following program?
```
#include<stdio.h>
int Fun( int n){
    if(n%100 == n/100) return 1;
    else return 0;
}
int main(){
    int i,n=2020;
    if(Fun(n)) printf("Yes");
    else printf("No");
    return 0;
}
Output:
```

7. Given an incomplete C program that calculates the row-wise sum of a 2-D matrix (a). At the same time, the program transforms the matrix a to now contain only the row-wise sums along its main diagonal, and resets the other elements to zero. For example, if $a=\{\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$, then at the end of execution of the function sum, a becomes $\{\{\mathbf{6}, \mathbf{0}, \mathbf{0}\},\{\mathbf{0}, \mathbf{1 5}, \mathbf{0}\},\{\mathbf{0}, \mathbf{0}, \mathbf{2 4 \}}\}$. Complete the implementation by filling in the blanks. Don't declare any new variables. $\mathbf{5 x 1 = 5 M}$
```
#include <stdio.h>
#define Row 3
#define Col 3
void sum (int a[][])
{
    int i,j;
    for (int i=0; i<
```

\qquad

``` ; i++)
    {
        int sum=0;
        for (int j=0; j<
```

\qquad

``` ; j++)
        {
```

\qquad
\qquad

```
            if(i==j)
```

\qquad

```
        }
    }
}
int main() {
    int a[Row][Col]={1,2,3,4,5,6,7,8,9};
    sum(a);
    return 0;
}
```

8. Given an incomplete program that finds and prints unique elements from an integer array. Fill in the blanks to complete the program. Don't declare any new variables. $\mathbf{2 x 3}=\mathbf{6 M}$
```
#include <stdio.h>
void printUniqueNumbers(int a[], int n)
{
        int i, j;
        for (i=0; i<n; i++)
        {
            for (j=0; ___ j++){
                    if(___)
                break;
                    if(
                        printf("%d", a[i]);
                        }
        }
}
int main()
{
        int arr[5] = {5, 6, 10, 6, 5};
        printUniqueNumbers(arr,5);
        return 0;
}
```

Consider the following program for Questions 9 to 11

```
int x;
static int y;
int main() {
    const int m=10;
    static char z; z = 'A'; z++;
}
```

9. Storage class of variable \mathbf{x} is \qquad . It resides in \qquad segment of the memory. Its default value is \qquad 3M
10. Storage class of variable m is \qquad It resides in \qquad segment of the memory. 2M
11. How many bytes does \mathbf{z} occupy? Ans: \qquad 1M
12. Complete the following C program that adds two distances (given in inches and feet). Two variables dist1, dist2 of type struct Distance are given to store the input distances, which can be assumed to be captured in the main() function (not explicitly given below). The function add_dist() is called in the main() function to add distances dist1 and dist2 and print their sum. Don't declare any additional variable. $\mathbf{4 \times 2} \mathbf{= 8} \mathbf{8}$
```
struct Distance {
    int feet;
    int inch;
} dist1, dist2, sum;
void add_dist()
{
    // Code to add the two distances
```

```
    // Code to convert inches to feet if greater than 12
    while (sum.inch >= 12) {
```

\qquad
\qquad

```
    }
    printf("\nSum of distances = %d feet,%d inches", sum.feet, sum.inch);
}
```

13. Following is an incomplete code of a function that finds the factorial of a number num. The factorial computed must be stored in the variable fact. Assume that an appropriate function call is made in the main function for the same. Fill in the blanks to complete the code. Don't declare any additional variables. $\mathbf{3 x 2}=\mathbf{6 M}$
```
void findFact(int num, int *fact)
```

\{
int i;
for (i=1;
\qquad ;i++)

