1°* Sem. 2021-22
CS F214 Logic in Computer Science
End Sem (Closed Book)

Time: 3 hours Marks: 100

Instructions:

1. All subparts of the questions should be answered collectively.

2. Questions where Boolean answers are sought with an explanation, provide the Boolean
answer explicitly following the explanation. The explanation will be considered only if the
Boolean answer is correct.

3. Please cross the unused sheets. If you answer any question more than once, the answer
will not be considered for evaluation.

4. Be concise and to the point in answering.

Q1. Consider the following formulas:

dl=p->((qVr)A=(qAr))
$2=p>((sVt)A-(tAs))
d3=s5->¢q

dd=-r>t

d5=t—>s

Using resolution, prove that —p is the logical consequence of {$p1, 2, b3, d4, $5}. [10M]



First, we convert the premises to their CNF form and convert to CNF the negation of the conclusion

=-pV((gVr)A(-gV-r))
=(-pVgVr)A(-pV-gV-r)
= {pqr. par}

d=p—>((gvVr)A-(gAT))

b= (-pVsVit)A(-pV sV -t) = {pst,pls}
¢3=sVq=35q

pa=rNt=ri

o5 =-tVs=ts

We apply the resolution procedure on the set {(1)pgr, (2)pqr, (3)pst, (4)pst, (5)3q, (6)rt, (7)Es, (8)p}.

(9) pgt = Res(2,6)
(10) pgs = Res(7,9)
(11) pgt = Res(10,4)

Res(11,6)
Res(12,2)

)
)
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(14) ps = Res(3,7)
)
)
)
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(15)pg = Res(14,5)
p = Res(15,13)
00 = Res(16,8)

Q2. Construct BDD((p V q) = (p A q)) from BDD(p A q) and BDD(p V q), using the ordering p < q
[10M]



BDD(p v q) BDD(p A q)
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Merging leaves
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Q3. Show (p 2> g) V((qATr)Vp)=pV-p by the construction of the reduced OBDDs of both the formulae.
[15M]



We use p <0 g < r as ordering. First we construcl the OBDDs of the subformulas p — g and ¢ A r from the truth
trees;

Truth tree of p — g OBDD
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Truth tree of g A r
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Furthermore, the OBDD of p is

The composition for (g A r) V' p gives rise to the tree on the left hand side, resulting in the OBDD on the right hand
side:

Finally, the composition for (p — q) V' [{g A r) V p) gives rise to the tree on the left hand side. resulting in the
OBDD on the right hand side:

[

Since this last OBDD equals that of p 'V —p, we are done.

Q4. A fairness constraint is imposed on (the scheduler of) the system that it fairly selects the process to
be executed next. One can have three typical fairness constraints.

a. Absolute Fairness, Impartiality: every process should be executed infinitely often
GF exi



b. Strong Fairness: Every process that is infinitely often enabled should be executed infinitely
often in a state where it is enabled
(GF eni) = (GF(eni A exi)).

c. Weak Fairness: Every process that is almost always enabled should be executed infinitely
often
(FG eni) = (GF exi)

Formulate each of these fairness constraint in LTL. Use the following atomic propositions: ex;
denotes process execution. en; denotes process being enabled.

Does absolute Fairness imply Strong Fairness?
Does Strong Fairness imply absolute fairness? [10M]

Absolute Fairness does not imply Strong Fairness, nor vice versa

Q5. Consider the TS below and the CTL formula 3¢Voc. Decide whether the formula is satisfied over the
TS. Also, outline (in a numbered manner) the CTL model checking steps used to obtain the answer. [15M]

First consider the formula & = 3 vl e:
It can be expressed equivalently in ENF:

&, =3opvOe
= (true UV e)
= J(trueU —3Q —¢)
= d(true U —3A(true U —c)).

The bottom-up computation of the satisfaction sets yields:
— Sat(true) =8

Sat(e) = {89, 83, 84}

Sat{—e) = {s0,s1}

Sat(3 (true U —e)) yields a backward search as follows:
* E =T = Sat(—¢) = {so,s1}
* Choose sp: As Pre(sp) = @, we get E = {s1}
* Choose s;: Pre(s;) = {sp}. But sy € Sat(true) \ T' (i.e., it has already been
visited ), we get £ = @



= = {3{;, .‘.-'1}.
Sat(—3 (trueU —e)) = {sa, 85, 54}
Sat(d (true U—3 (true U —e))) again yields a backward search:
# F =T = Sat(—-3 (true U—-c)) = {s2, 53,8}
#* Choose s2: Pre(ssz) = {s2.s3}. but all predecessors are already in T
{83,854}

* Choose s3: Pre(sg) = {s1}. Here we have s, & T and s, & Sat(frue).
T=TuU{s}={s1, 92,8381} and E = EU{s;} = {8, 54} (85 gets rem
E)

Choose s1: Pre(si1) = {so}. Again sg € Sat{true)\T and therefore T' ="
Sand E = EU{sa} = {s0,51}

+ Choose sp: Pre(sp) = @ and we directly continue with s4:

*

* Choose sg: Pre(sy) = {s1,54} but 51, 54 are already in T'. Therefore we
E—o.

=T = {80, 51,82, 53, 84}

-efore, we have Sat(®,) = {sp, 81,592, 83, 84} and I C Sat(®,) = TS E &,.

Q6. Write the following statements in predicate logic:

(a) A natural number is a prime if it has no factors other than 1 and itself.
(b) Given any natural number, there is a larger prime number.

(c) Any natural number can be written as a product of primes.

You can use predicates of your choice. [2x3 = 6M]

Q7. Prove the sequent: 3Y VX (a(X) - b(Y)) F VX 3y (a(X) - b(Y)) [aMm]

Q8. Use predicates: add(X,Y, Z) denoting X + Y = Z; mult(X,Y, Z) denoting X * Y = Z; to define
pow(X,Y,Z) to denote XY = Z; and to define divof(X,Y) to denote X is a divisor of Y. [SM]

Q9. Define proof rules in natural deduction style for “introduction” and “elimination” of the following
operators. [5M]

(a) NOR operator
(b) NAND operator

Q10.(a) Prove the sequent pVq, p=>q, q 2p, ~(pAq) |--r [5M]
(b) Prove the sequent |-- (p V (p =q)) [5M]

Q11. Prove the sequent Vx 3y R(x, y) |-- Vx =Vy Vz — (R(x, y) A R(y, z)) [10M]






